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Chapter 1

Motivation

High-energy proton-proton (pp) collisions provide an excellent opportunity to inves-
tigate quantum chromodynamics (QCD), the theory of the strong interaction, in the
laboratory. Experiments like ALICE at the Large Hadron Collider (LHC) measure the
particles emerging from these collisions. The measured particle abundancies can be
connected to the underlying QCD processes via phenomenological models. Those are
implemented in event generators like PYTHIA [1], which intend to model the whole
evolution of a high-energy collision and rely on free parameters that are "tuned" to
best describe experimental data. The current most prominent and established high-
energy tune of PYTHIA was adjusted to best reproduce LHC Run 1 measurements of
pp collisions at

√
s = 7 TeV [2].

Recently, ALICE published a comprehensive dataset of inclusive charged-particle
multiplicity (Nch) distributions and transverse momentum (pT) spectra for pp collisions
at five different center-of-mass energies ranging from

√
s = 2.76 TeV up to 13 TeV [3].

It was shown that PYTHIA’s description of these fundamental observables deteriorates
for collision energies further away from the tuning energy, which raises the question of
how accurately it projects particle production to regimes beyond the LHC energies.

This thesis proposes an alternative approach to predict the previously mentioned
fundamental observables (Nch distributions and pT spectra) at unmeasured energies by
parameterizing ALICE data with two deep neural networks (DNNs). As opposed to
PYTHIA, this approach gives no direct access to a physics interpretation of the mea-
surements as it makes no assumptions about the underlying QCD processes leading to
particle production. Instead, the neural networks learn a functional representation of
the collision-energy dependence and make "data-driven" predictions for the Nch distri-
butions and pT spectra. This allows for interpolating and extrapolating these observ-
ables beyond the discrete LHC collision energies. Energy interpolations of pT spectra
can be used for constructing a pp reference for the nuclear modification factor (RAA).
This quantifies how the presence of quark-gluon plasma (QGP), an extreme state of
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1. Motivation

matter created in central heavy-ion collisions, affects particle production. In 2017,
Xe–Xe collisions were measured at the LHC with an energy of

√
sNN = 5.44 TeV, but

no corresponding pp reference measurement was recorded. In a previous publication,
a power-law interpolation was performed to provide a pp reference for the calculation
of the RAA [4]. Training a deep neural network on pT spectra at different energies, as
proposed in this thesis, offers an alternative, purely data-driven interpolation method
with no assumption regarding the functional shape. In this thesis, the interpolation by
the DNN model is compared to the power-law interpolation published in [4]. Further-
more, the extrapolation potential of the DNNs can be used to estimate the spectra at
energies beyond those currently available at the LHC. Comparisons to measurements
at the Relativistic Heavy-Ion Collider (

√
smax = 200 GeV) or potential future high-

energy accelerator facilities like the planned High-Energy LHC (
√
smax = 27 TeV) or

even the Future Circular Collider (
√
smax = 100 TeV), could help to quantify the dif-

ferences in particle production at these energies. In addition, the energy dependence of
the average number of produced particles predicted by the DNN models is compared
to an empirically observed power-law scaling. PYTHIA allows for simulating colli-
sions at any given energy, providing the opportunity to indirectly assess the predictive
power of the ALICE-trained DNN models beyond the LHC energies. For this purpose,
two further DNN models are trained on PYTHIA-simulated Nch distributions and pT
spectra at LHC energies and subsequently tested on other simulated energies. Finally,
the predictions from the ALICE-trained DNNs are compared to PYTHIA simulations
over a wide range of collision energies (0.5 TeV ≤

√
s ≤ 100 TeV). This enables to

quantify how the discrepancy of charged-particle production predicted by the QCD-
inspired physics models implemented in PYTHIA to the LHC measurements evolves
with collision energy.

The thesis is structured as follows. In Chapter 2, an overview of the theoretical
background of high-energy physics and the machine-learning techniques relevant to
this thesis is given. Subsequently, Chapter 3 provides a detailed description of the
analysis conducted in this thesis. The results are discussed in Chapter 4. Finally,
Chapter 5 provides a summary and outlook.

2



Chapter 2

Theoretical background

2.1 The strong interaction

The universe, at its smallest scale, consists of so-called indivisible particles. The field
of high-energy physics studies these particles as well as the fundamental forces that
govern them. The dominating fundamental force at the smallest scales is the strong
interaction, whose effects are described by the theory of quantum chromodynamics
(QCD). The strong interaction is mediated by an exchange particle called gluon that
couples to the so-called color charge of the strong interaction. The fundamental color-
charged particles, sensitive to the strong interaction, are so-called quarks and, notably,
gluons themselves. In analogy to the primary colors, a quark carries one of three color
charges: red (r), green (g) or blue (b). Their antimatter counterparts, the antiquarks,
have a color charge corresponding to antired (r), antigreen (g) or antiblue (b). Gluons
exhibit both a color and an anticolor charge. A characteristic of the strong interaction
is the so-called color confinement. This dictates that only color-neutral particle states
can be realized in nature. No free (anti-)quarks or gluons have been observed. Color
neutrality can be achieved by combining all three (anti-)colors or a color with its
anticolor counterpart. Therefore, to form color-neutral states, (anti-)quarks and gluons
bind themselves into new particles, so-called hadrons. A bound state of three quarks
(qqq) with color charges rgb is called baryon. Protons and neutrons are examples of
baryons. A quark and an antiquark with complementary color and anticolor such as rr,
gg or bb can also form a bound state (qq). These bound states are called mesons, like
pions and kaons. Hadrons stay bound by constantly exchanging gluons. Since gluons
are also color-charged, they can also attract each other, forming so-called strings.
When attempting to separate a bound quark-antiquark pair, the binding strings come
closer together. As a result, the binding force of the meson becomes increasingly
stronger, explaining the phenomenon of color confinement. If the energy is increased
further until the string breaks, the released potential energy becomes sufficient to

3



2. Theoretical background

Figure 2.1: Measurements of αs as a function of Q as published in the quantum
chromodynamics review of [5].

create a new quark-antiquark pair. The coupling constant of the strong interaction,
αs, determines its strength. A summary of αs measurements as of 2016 is shown as
a function of Q for a temperature of T = 0 K in Figure 2.1. Notably, αs can vary
significantly with the momentum transfer Q between strongly interacting particles.
Due to its dependence on Q, αs is commonly referred to as a running coupling constant.
Typically, the world average for αs is given for an energy scale of the invariant mass of
the Z0 boson (MZ), one of the exchange particles of the weak interaction. The current
world average lies at αs(MZ) = 0.1179±0.0009 [6]. As shown in Figure 2.1, αs becomes
very large for low momentum transfer and very small for large momentum transfer.
A large momentum transfer corresponds to small distances between the interacting
particles. Therefore, for large momentum transfer and small distances, the coupling
constant converges towards zero. In this scenario, quarks are quasi-free as they are no
longer confined in hadrons. This effect is known as asymptotic freedom. Notably, αs is
also dependent on the temperature. Therefore, in a thermalized medium αs becomes
small for high temperatures or energy densities, resulting in an exotic state of matter
in which partons are quasi-free: a quark-gluon plasma. A strongly interacting QGP
is formed within instants after a high-energy heavy-ion collision, where the energy
density becomes extremely high. For processes with large momentum transfer, where
αs becomes small, the self-interaction of gluons becomes negligible. Therefore, these
so-called "hard" processes can be accessed theoretically via perturbative methods.
However, for processes with small momentum transfer, αs diverges. Consequently, the
self-interaction of gluons becomes increasingly relevant so that the processes cannot
be described analytically and phenomenological models are needed. These processes
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2. Theoretical background

Figure 2.2: Schematic representation of a pp collision with a hard quark-gluon scat-
tering [7].

are called "soft" processes.

2.2 Particle production in pp collisions

Particle accelerators, like the LHC, allow to study the strong interaction by means of
high-energy particle collisions, e.g. pp collisions. At these high energies, the probing
wavelength of the colliding particles becomes small, resulting in a higher resolution.
The interactions occur between the fundamental building blocks of the colliding par-
ticles, quarks and gluons, also referred to as partons. These partons undergo various
interactions during the collision. The majority of the partons scatter inelastically, re-
sulting in the production of new particles. The momentum fraction of a parton in the
proton is described by a so-called parton-distribution function (PDF). The accelerated
partons emit gluons during the collisions. These gluons can split up into gluons or
quark-antiquark pairs which can, in turn, emit further gluons. This results in a so-
called parton shower. The energy of each showering parton is distributed between the
produced partons. Therefore, the parton shower keeps propagating until the parton
energy is too small for further gluon radiation. The color-charged partons from the
shower cannot stay isolated due to color confinement, so that new quark-antiquark
pairs are formed. Consequently, the created quark-antiquark pairs bind other quarks
and antiquarks in the parton shower to form color-neutral hadrons. The hadrons form
a cone-like structure, a so-called jet that can be measured by the detectors at the
accelerator as a cluster of hadrons. Jet production is a dominant process of hard in-
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2. Theoretical background

teractions. The process of forming hadrons is called hadronization. Because of the
decreasing energy of the partons in the shower, hadronization involves soft partonic
interactions.

The hardest interaction in a collision is called the primary process. However, other
numerous interactions occur between the residual initial state partons that did not
participate in the primary process of the collisions. All these additional interactions
are summarized into the so-called underlying event (UE) of the collision. The mo-
mentum transfer involved in the UE is significantly lower than in the primary process.
Therefore, the UE often yields softer and fewer particles. An illustration of the hard
scattering with resulting showering and hadronization into final-state particles as well
as UE processes in a pp collision is shown in Figure 2.2. Understanding the effect
of the UE on the final state can help to separate its contribution from that of the
primary process. This can lead to more precise measurements of the primary process
of a collision. Soft processes contribute significantly to the final state of a collision.
Due to large values of αs, these processes cannot be accessed analytically. There are
various Monte Carlo generators that employ such phenomenological models to simu-
late the underlying processes of particle collisions. One of these models is the Lund
String Model, which aims to describe the hadronization process in high-energy particle
collisions. As such, it attempts to describe the process of partons combining to form
color-neutral hadrons. The Lund String Model assumes that this process involves the
previously introduced string breaking. In the latter, the exchanged gluons between a
quark-antiquark pair attract one another due to their self-interaction and form strings.
The potential for the strong interaction between the quark and the antiquark is de-
scribed by two terms:

V (r) = −
4

3

αs(Q(r)) · ~c
r

+ k · r. (2.1)

The first term is Coulomb-like and dominates the potential at small distances r, where
it describes the behavior of the quark and the antiquark as quasi-free particles, the
asymptotic freedom. The second term dominates for larger distances. It describes the
linear increase of the potential energy with increasing distance between the quark and
antiquark, with k representing the energy density per unit length. The Lund String
Model is implemented in the PYTHIA event generator [1]. PYTHIA can simulate
particle collisions, in the following also called events, from the initial to the final
state of the collision. The free parameters in the phenomenological models must be
tuned in order to correctly describe the underlying processes of a collision. For that
purpose, measured final states of particle collisions are used that constrain the possible
values for these parameters. Therefore, highly precise and extensive measurements at
collider experiments are essential to tune them. For example, the Monash tune of
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2. Theoretical background

PYTHIA incorporates constraints provided by measurements of e+e− experiments to
tune the final-state radiation and hadronization parameters [2]. Furthermore, it utilizes
extensive measurements of pp collisions at the LHC to tune further parameters. This
tune is designed to describe the measurements from the LHC at a center-of-mass
energy of

√
s = 7 TeV. Therefore, it is well suited to simulate high-energy hadron

collisions. Another collider experiment, the Relativistic Heavy Ion Collider (RHIC),
conducts pp collision at significantly lower

√
s , the highest being

√
s = 0.2 TeV.

Previous publications have shown that UE observables of measured pp collisions at
RHIC for

√
s = 0.2 TeV are not correctly described by the Monash tune [8]. In low-

energy collisions, soft processes become more relevant to the final state of a collision.
Therefore, it has been argued that the discrepancies between the simulations and the
measurements can be traced back to incorrect modeling of the soft QCD processes of
the UE by the Monash tune. To address this issue, PYTHIA tunes that are optimized
to describe measurements of low-energy collisions have been proposed.

As discussed previously, event generators like PYTHIA require precise measure-
ments of the final state of a collision to tune their parameters. This thesis focuses on
the final-state charged particles (predominantly consisting of pions, kaons and protons)
produced in high-energy pp collisions measured at ALICE.

2.3 Charged particles in ALICE

In the Large Hadron Collider (LHC) at CERN hadrons collide at the currently highest
possible center-of-mass energies in the world. It consists of a 27 km-long underground
ring equipped with superconducting magnets at a depth of about 100 meters. Within
the ring, opposing hadron beams are accelerated close to the speed of light in two
separate beam pipes. At four interaction points, these opposing beams are brought to
collision. Four large experiments (ATLAS, ALICE, CMS and LHCb) are positioned
around these crossing points to measure the particles produced in the collisions. The
strength of the magnetic fields from the superconducting magnets as well as the radius
of the LHC determine the maximum center-of-mass energy that can be reached, which
corresponds to

√
s = 14 TeV. Currently, in LHC Run 3, proton beams have been

accelerated to a maximum of
√
s = 13.6 TeV.

ALICE is dedicated to studying an exotic state of matter, the quark-gluon plasma.
For this purpose, the research program of ALICE focuses on measuring central heavy-
ion collisions such as lead-lead (Pb–Pb) to reach energy densities high enough to form
a QGP. ALICE consists of a wide range of sub-detectors, which allow highly pre-
cise measurements. A schematic representation of the ALICE detectors is shown in
Figure 2.3. The ALICE detector provides excellent tracking capabilities for charged
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2. Theoretical background

Figure 2.3: Schematic representation of the experimental setup of ALICE [9].

particles. The most relevant detectors for the measurement of charged particles are
the Inner Tracking System (ITS) and the Time Projection Chamber (TPC). The ITS
consists of six layers of silicon detectors. It is used to identify the primary vertex
of a collision with extremely high precision. The TPC is a large gas-filled chamber
that allows for the three-dimensional reconstruction of charged-particle trajectories
via their ionization of the gas molecules in the chamber. The trajectories are bent
in the 0.5 T magnetic field of a solenoid magnet. By measuring their curvature, the
transverse momentum or pT of the charged particles produced in the collisions can
be determined. Since the transverse momentum of the colliding protons is zero, the
measured transverse momentum of the produced charged particles can only originate
from the collision. ALICE is specially designed for measurements down to very low
pT, which characterize soft QCD processes and consequently provide important con-
straints for phenomenological models. The number of charged particles produced in
a collision is commonly referred to as multiplicity or Nch. Measuring Nch and pT

for many collisions yields charged-particle Nch distributions and pT spectra. Both
are basic observables that characterize the charged-particle production mechanisms
of high-energy collisions. Multiplicity distributions represent the probability for the
production of a given number of charged particles in a collision or P (Nch). Transverse
momentum spectra represent the production rate of charged particles with a given pT
in a collision, the so-called yield.

While ALICE is dedicated to the study of heavy-ion collisions, pp collisions still
play a significant role as the charged-particle spectra of pp collisions are useful for the
tuning of phenomenological models. Furthermore, reference measurements from pp
collisions are required to study QGP properties in heavy-ion collisions via the nuclear

8



2. Theoretical background

0 10 20 30 40 50 60 70

chN

5−10

4−10

3−10

2−10

1−10

1)
ch

N(
P

13 TeV

8 TeV

7 TeV

5.02 TeV

2.76 TeV

ALICE, pp collisions, charged particles

c < 10 GeV/
T

p < c| < 0.8, 0.15 GeV/η|

1 10
)c (GeV/

T
p

4−10

3−10

2−10

1−10

1

10

-1 )c
) 

(G
eV

/
ηd

T
p

/(
d

N2
  d

>
 0

ch
N

ev
t, 

N
1/

13 TeV

8 TeV

7 TeV

5.02 TeV

2.76 TeV

ALICE, pp collisions, charged particles

c < 10 GeV/
T

p < c| < 0.8, 0.15 GeV/η|

Figure 2.4: Charged-particle multiplicity distributions and pT spectra of pp collisions
at different

√
s as published by the ALICE collaboration in [3].

modification factor.
A recently published paper by the ALICE collaboration presents a comprehensive

analysis of charged-particle production measured with ALICE during LHC Run 1 and
Run 2 (2009 - 2018) for various collision systems. The measurements contain pp colli-
sions at the following center-of-mass energies:

√
s = 2.76, 5.02, 7, 8, and 13 TeV [3].

The results of the analysis include the Nch distribution and the charged-particle pT
spectrum of the collisions within the kinematic range 0.15 GeV/c < pT < 10GeV/c

and |η| < 0.8. Only collisions with at least one charged particle in this kinematic
region are considered. These measurements lay the foundation for this thesis. The
Nch distribution and the charged-particle pT spectrum for pp collisions at the different
√
s are shown left and right in Figure 2.4, respectively. The Nch distributions show

that the number of produced charged particles increases with increasing center-of-mass
energies. At low multiplicities, the distributions exhibit a peak at around Nch = 2,
marking the most probable number of charged particles produced in a collision. The pT
spectra show an exponentially decreasing trend at low pT, where the charged-particle
production is dominated by soft processes. At higher pT, where the processes are in-
creasingly harder, the trend follows a power-law-like behavior. These two components
of the spectrum point to the two different production mechanisms, hard and soft, and
are often implemented for the parametrization of the spectrum [10].

This thesis focuses on the energy dependence of charged-particle production. Fig-
ure 2.5 shows the average number of charged particles measured by different experi-
ments as a function of the center-of-mass energy. The ALICE points are highlighted in
red. Measurements of the same event class can be parametrized by a power-law func-
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Figure 2.5: Average number of charged particles measured by different experiments in
pp and pp̄ collisions between

√
s = 23.6 GeV and 13.6 TeV [11].

tion (sn). This thesis aims to model the energy-dependent charged-particle spectra of
pp collisions at ALICE based on measurements published by the ALICE Collaboration
in [3] over a wide center-of-mass energy range using deep neural networks.

2.4 Neural networks

The high performance of artificial neural networks (NNs) in solving complex tasks has
contributed significantly to the success of machine learning in recent years. Neural
networks are often implemented for two types of tasks: assigning a label to data based
on their features, so-called classification tasks, and finding the functional relationship
between input and output values, so-called regression tasks. NNs are designed to
resemble the inner workings of biological neural networks in the human brain, where
incoming information propagates through the connections between so-called neurons
and is processed within each of these neurons. In analogy, NNs are comprised of
interconnected neurons, as well, and propagate the incoming data similarly. Therefore,
they can imitate the brain’s learning process and are widely employed to solve complex
tasks.

2.4.1 Structure

Artificial neural networks consist of interconnected neurons that are organized into
layers. The structure of a NN includes both an input layer and an output layer.
Additionally, NNs can have more layers in between, so-called hidden layers. The
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Figure 2.6: Schematic representation of a feedforward deep neural network.

structure of a NN is illustrated in Figure 2.6, where the input layer has two neurons
and the output layer has a single neuron. The hidden layers consist of three and
two neurons, respectively. The number of neurons in the input layer of a neural
network corresponds to the number of so-called input features that characterize the
data. As shown in Figure 2.6, the input layer receives the input data and distributes
it through the connections between neurons to the hidden layers. The hidden layers,
also interconnected, are responsible for transforming and transmitting the data to the
output layer. The output layer then generates the output of the NN.

NNs with more than one hidden layer are called deep neural networks (DNNs).
Furthermore, in so-called feedforward neural networks, the information flows in a for-
ward direction, propagating from the input layer to the output layer. In this type of
NN, only neighboring layers are interconnected. In case the neurons in each hidden
layer are connected to all neurons from the neighboring layers, a feedforward neural
network is considered to be fully connected.

2.4.2 Data propagation

In NNs, the data is transformed in each layer and passed to the next through the
connections between neurons, so that the output of one layer becomes the input of the
next. This process of transforming and propagating the data toward the output layer
is called a forward pass through the network. In the following, the mathematical op-
erations and transformations related to the forward pass are presented for feedforward
deep neural networks.

The connections between neurons as well as the neurons themselves are assigned
numerical values. These so-called weights w and biases b correspond to the NN’s
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parameters. The weights of the connections between neurons assign a certain degree
of importance to the incoming data from the previous layer. NNs aim to make informed
predictions by recognizing relationships and patterns within the data. This is done by
adjusting the NN’s parameters during the training process. The input of a neuron is
a linear transformation of the incoming data, corresponding to the weighted sum z of
the output values yn of each neuron n from the previous layer:

z =
∑
n

wn · yn + b . (2.2)

Each layer processes the incoming data z from the previous layer, through a non-
linear transformation. For this purpose, a so-called activation function f is applied to
z. The output values of each neuron in the current layer become y = f(z).

To compute the output values of an entire layer, the data, weights and biases are
represented by matrices. In the following example, two neighboring layers (j − 1) and
j are considered. Here, layer j − 1 has m neurons and layer j has n neurons. Since
all neurons from layer (j − 1) are connected to those of layer j, the weights form a
matrix Ŵ

(j,j−1)
n,m with dimensions n × m. The bias and the output of layer j can be

represented as vectors ~bj and ~yj with dimensions of n× 1. The output of layer j can
then be calculated by adapting the dimensions in Equation 2.2:

~yj = f(~zj) = f
(
Ŵj,j−1

n,m · ~yj−1 +~bj
)

. (2.3)

The functional representation F of the whole network is a recursive form of Equa-
tion 2.3 through all its L layers and computes the output F (~x) for a given set of input
features ~x as:

F (~x) = fL
(
~bL + ŴL · fL−1

(
~bL−1 + ŴL−1...f 1

(
~b1 + Ŵ1 · ~x

)
...
))

. (2.4)

Thus, a neural network is essentially a multidimensional function with many pa-
rameters. The number of input features varies and matches the number of neurons in
the input layer; the same applies to the output features. Figure 2.6, introduced in the
previous section, depicts an example of a network architecture with two input features
and a single output feature. The activation function may also vary between layers.

2.4.3 Learning process

In this thesis, deep neural networks are trained with data whose output is known.
This approach is called supervised learning. In this case, the neural network aims to
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approximate an unknown output function f ?, which represents the true functional re-
lationship between the input and the target values, with F . F represents the function
of the network shown in Equation 2.4. By adjusting the parameters α (weights and
biases) of F during training, the approximation of f ? becomes more accurate, effec-
tively optimizing the NN’s performance. For this, the NN performance must first be
quantified by the deviation of the NN’s predictions, or values of F , from the target
values. This is done using a metric. Metrics are mathematical constructs that allow
to define a distance between elements within a set called metric space [12]. In machine
learning, metrics come into play by specifying a distance or deviation between the
NN predictions and target values. Thus, they generate numerical values that quantify
the NN’s performance. Different metrics focus on evaluating other characteristics of
the NN’s performance. Therefore, the choice of metric strongly depends on the task
at hand. A common metric for regression tasks is the Mean Absolute Error (MAE),
which measures the absolute difference of F from the target function f ? averaged over
the number of samples N for a given set of inputs {xi} with i = 0, ..., N . This metric is
α-dependent and, if evaluated during the NN’s learning process, is commonly referred
to as the loss function. To optimize the NN’s performance, the goal of the learning
process is to minimize the loss function:

LMAE(α) =
1

N

N∑
i=1

|F (xi, α)− f ?(xi)| . (2.5)

This is done by finding an optimal set of parameters α that result in a minimum of
the loss function. This optimal set of parameters is characterized by the gradient of the
loss function becoming zero at these values of α, indicating a local or, ideally, a global
minimum of the loss function. Therefore, to find the optimal α the gradient of L(α)

must be calculated for each parameter in the network. However, these calculations can
be computationally expensive. Therefore, a balance must be found between achieving
accurate calculations of the gradient and reducing computational cost. As shown
in Equation 2.4, the output of each layer in the network depends on all previous
layers. Therefore, the chain rule can be applied when computing the gradient of each
layer, avoiding redundant gradient calculations. Consequently, the gradient for each
parameter can be computed more efficiently by applying the chain rule going backward
through the network layer by layer in a so-called backward pass. This method is
known as backpropagation. Here, the backward pass for computing the gradient is
done after the forward pass of a batch of training samples. A detailed derivation
of the calculations used to compute the gradient for each NN parameter during the
backward pass is given in [13].

A widely used optimization method for adjusting the NN’s parameters is Gradient
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Figure 2.7: Illustration of the stepwise adjustment of the NN’s parameters (θ̂) towards
the minimum of the loss function (cost) [14].

Descent (GD). As shown in Equation 2.6, the NN’s parameters are adjusted in the
direction of the falling gradient of L(α), with a specific step size η:

α′j = αj − η ·
∂L
∂αj

. (2.6)

The adjustment of α gets smaller, the closer the gradient comes to zero. This
enables to fine-tune the set of parameters α to their optimum values. This method is
an analogy to the physical phenomenon of a body moving towards the minimum of
a potential. An example of GD is illustrated in Figure 2.7. Here, the loss function
(or cost) is shown as a function of the NN’s parameters. Additionally, the updated
parameters show larger steps where the slope is steep and then gradually smaller steps
once the location of the minimum is approached.

In GD, the gradient is calculated for the entire dataset. A different method esti-
mates the gradient for a small batch of training samples instead of the whole dataset.
This helps reduce computational costs as well as accelerate training. This method is
commonly referred to as Stochastic Gradient Descent (SGD) and becomes increasingly
significant for large datasets.

A training iteration consists of a single forward and backward pass over the whole
dataset. After a training iteration has been completed, a so-called epoch has passed.
The whole training process continues for many epochs, during which the parameters
are updated according to Equation 2.6. Ideally, at some point during training, the
convergence of the loss function can be observed with an increasing number of epochs
and indicates that a minimum value of the loss function is approached.
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2.4.4 Regularization techniques

A major challenge when training neural networks is to ensure that they acquire a
sufficiently generalized knowledge of the correlations in the training data. This gen-
eralized knowledge allows the NN not only to successfully fit the training data but
to make accurate predictions on new, unseen data as well. Commonly referred to as
generalization power, it helps prevent the NN from memorizing details or fluctuations
in the training data too well, performing badly on new data. This effect is known as
overfitting. Different techniques help improve generalization, like data splitting, early
stopping, dropout as well as L1 and L2 regularization, all of which will be discussed
in the following.

The process of data splitting consists of dividing the data into separate datasets,
each serving a different purpose for the NN. Typically, the data is separated into three
datasets for training, validation and testing. The training dataset is implemented
during the training process to compute the loss and update the NN’s parameters.
Furthermore, the primary role of the validation dataset is to help detect overfitting
which can happen if the NN is trained for too long resulting in a bias of the NN’s
parameters towards the training data. The longer an overfitting NN is trained, the
worse it performs on unseen data. Calculating the so-called validation loss, or value
of the loss function for the validation dataset, quantifies the performance of the NN
on unseen data. Therefore, a gradual increase in the validation loss as a function of
the epochs is an indicator of overfitting. Once it ceases to improve after a certain
number of epochs, usually referred to as patience, the training process is stopped.
As discussed earlier, monitoring the validation metric provides insight into whether
the NN is experiencing overfitting, since it would gradually worsen. This information
can be actively used to decide when to stop the training process, effectively reducing
overfitting. This technique is called early stopping. Additionally, it is common practice
to assign data to a third dataset, entirely independent of the training process. This
so-called test dataset has the purpose of evaluating the NN’s performance on new,
unseen data with a given metric. Since the dataset did not influence the training
process or its duration, the evaluation results are unbiased, providing a fair estimate
of the NN’s performance.

Two further regularization techniques help increase the generalization power of the
NN by penalizing large weights when computing the loss function [15]. This is done
by adding a penalty term to the loss function. One of these techniques adds a penalty
term to the loss function that is proportional to the absolute values of the weights. The
second technique adds a the penalty term is proportional to the squared values of the
weights. The resulting loss functions are shown in Equation 2.7 and Equation 2.8. The
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choice of the constant λ, also known as the regularization factor, is key to achieving
a NN that neither underfits, as is the case for large values of λ, nor overfits for small
values of λ.

LL1(α) = L(α) + λ ·
∑
i

|wi| (2.7)

LL2(α) = L(α) + λ ·
∑
i

w2
i (2.8)

By strategically adjusting its weights during the training process, a neural network
can learn to give more importance to features that best represent the relationships and
patterns within the data. This can be done by assigning larger weights to these features
and smaller weights to features of little contribution to the desired output. The first
regularization technique, so-called L1 regularization, encourages the NN to drive some
of its weights to zero. As a result, the most relevant features are emphasized and the
less influential ones are ignored. Therefore, L1 regularization is useful for improving
feature selection.

The second technique, so-called L2 regularization, promotes a more balanced dis-
tribution of the weight values across the NN. Accordingly, it facilitates the processing
of highly correlated features by preventing the dominance of a single feature.

An effective regularization technique combines both L1 and L2 regularization to
leverage their respective strengths, as seen in Equation 2.9. The resulting penalty
term of the loss function is a linear combination of the L1 and L1 penalty terms.
The strength of each term is controlled by separate coefficients λ1 and λ2, as shown in
Equation 2.9. This allows the so-called elastic net to consider both feature selection
and weight distribution simultaneously [16].

LL1+L2(α) = L(α) + λ1 ·
∑
i

|wi|+ λ2 ·
∑
i

w2
i (2.9)

Dropout is a regularization method commonly employed when training neural net-
works. During this process, a dropout rate is assigned to each neuron in a layer,
determining the probability of that neuron being deactivated during training. This
means that the output of the neuron is set to zero. The dropout rate indicates the
portion of neurons to be deactivated, while the specific neurons are selected at ran-
dom. This random selection introduces a form of noise into the training process. As a
result, the NN is encouraged to develop more general representations of the underly-
ing relationships in the data. While this regularization technique has proven useful in
enhancing the generalization of classification problems, it is less suitable for handling
regression problems. It is important to consider that dropout is applied exclusively
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during training and is deactivated afterward. Therefore, deactivated neurons regain
activity after training, producing non-zero outputs. These non-zero outputs of the
activated neurons influence the overall output of each layer, subsequently influenc-
ing the output of the network. During training, the parameters of the output layer
(weights and biases) are adjusted to transform the outputs of the last hidden layer to
better describe patterns in the training data. As a result, a discrepancy arises between
the outputs generated by the NN with dropout active or inactive. This discrepancy
can lead to the NN yielding less accurate predictions once the training is concluded,
undermining the NN’s performance. Therefore, it becomes crucial to choose regular-
ization techniques that are suitable for the specific task at hand. The negative effects
of dropout on the performance of neural networks for regression were discussed in [17].

2.4.5 NN hyperparameters

The hyperparameters of a neural network determine the NN’s architecture and cannot
be learned during training. These hyperparameters include the depth, width, activa-
tion function(s), optimizer, learning rate, batch size, regularization and initialization
of the network. These new concepts are introduced below.

Depth of the network

The depth of the network refers to the number of hidden layers in the network. As
seen in Equation 2.4, the order of the data transformation increases with each layer,
similar to the order of polynomials. This allows deeper networks to capture more
intricate patterns within the data. However, excessive depth can lead to issues such
as vanishing or exploding gradients. These can occur when the gradients get very
small or very large during backpropagation. As shown in Equation 2.6, "vanishing"
gradients (close to zero) lead to a minimal adjustment of the NN’s parameters, which
causes slow learning. When gradients "explode", the updates to the NN’s parameters
become very large, which results in the NN failing to converge during the training
process. The issue of vanishing and exploding gradients is especially present in deep
networks since the gradients are repeatedly multiplied when they propagate backward
through the network’s layers during backpropagation, following the chain rule.

Width of the network

The width of the network represents the number of neurons in the network’s hidden
layers. In Figure 2.6, the input data, consisting of two features, gets partitioned
into three features when passing from the input layer (with two neurons) to the first
hidden layer (with three neurons). As shown by this example, the more neurons are
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in the hidden layers, the finer the features that the input data gets partitioned into.
Therefore, a wider network has the potential to represent complex functions with a
higher number of parameters. However, too wide networks tend to overfit the training
data by memorizing it. In recent years, the focus has shifted towards deep learning,
where NNs are becoming deeper instead of wider [18].

Activation function

Activation functions are designed to provide the NN with the necessary nonlinearity
to tackle problems of high complexity and to imitate the observed threshold behavior
of biological neural networks. As discussed in Subsection 2.4.2, the activation func-
tion of a layer is applied to the output of each neuron. Using a linear function as an
activation function would only deliver linear transformations and thus limit the NN’s
problem-solving abilities. Besides nonlinearity, there are further conditions that the
activation function must fulfill. Equation 2.4 and Equation 2.5 show that the loss func-
tion depends on the activation function. Thus, the gradient of the activation function
is required to calculate the gradient of the loss function during training. Consequently,
the activation function needs to be continuous and differentiable. Furthermore, when
employingdeep neural networks, it is important to choose activation functions that are
not inclined to vanishing or exploding gradients, which were discussed earlier. Some
commonly used activation functions include ReLU [19], tanh, and sigmoid. Functions
like softplus [20], SELU [21] and swish [22] belong to the more modern activation
functions that effectively address some limitations of the traditional activation func-
tions. Their performance varies widely depending on their application. Some of these
examples are depicted in Figure 2.8.

Batch size

During backpropagation, the backward pass for computing the gradient is done after
the forward pass of a batch of training samples. The gradient is then calculated for this
batch of samples. This speeds up training and decreases the amount of used memory
space. For this reason, the choice of batch size (number of training samples in each
batch) can be of great importance to the NN’s performance. In deep learning, it is
common practice to choose a batch size that is a power of two.

Learning rate

The step size η in Equation 2.6, also known as the learning rate of the network, plays
a big role in the success of the training process: if a too-small learning rate is chosen,
then the loss function could land in a local minimum during training and converge
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Figure 2.8: Softplus, SELU, ReLU, and swish activation functions.

there. Therefore, it must be large enough to avoid local minima, but small enough for
the loss function to achieve convergence.

Optimizer

Optimizers are neural network optimization algorithms that adjust the NN’s parame-
ters. They use mathematical functions to help minimize the loss function. One of the
most common optimizers, Gradient Descent (GD), was introduced in subsection 2.4.3.
This optimizer implements a constant learning rate to update the parameters. In
contrast, Adaptive Moment estimation (Adam) is a more advanced optimizer that ap-
plies an adaptive learning rate [23]. Adam calculates an individual learning rate for
each parameter in the network based on the first and second moments of the gradi-
ents. The first moment corresponds to the mean of the gradients, while the second
moment corresponds to the variance. These moments are computed as exponentially
decaying moving averages of past gradients and squared gradients, respectively. The
exponential decay gives more weight to recent gradients and gradually reduces the
impact of older gradients. This helps capture the overall trend of the gradients and
leads to faster convergence during training. Since the moments are initialized as ze-
ros at the start of training, a bias towards zero can be present in the early stages of
training. To correct this bias, the averages are scaled using decay rates denoted as β1
and β2. These decay rates also help control the contribution of older gradients to the
averages. The optimizer can balance considering recent gradients and including infor-
mation about past gradients by adjusting these decay rates. This approach, commonly
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referred to as the momentum method, aims to accelerate learning when encountering
high curvature regions. Overall, Adam combines the advantages of adaptive learning
rates, momentum-induced updates and bias correction to enhance and accelerate the
learning process in neural networks. This makes it a popular choice for an optimizer.

Initialization

While the NN’s weights and biases are constantly updated during training, they must
first be initialized to random numbers. This may be crucial to the learning process
because the initial parameter values determine the starting point in the loss function
landscape within the parameter space during training. Therefore, depending on these
initial values, it can be challenging for the network to achieve convergence. Further-
more, the initial values can result in the network getting trapped on a local minimum.
Too small or too large weights can also cause vanishing or exploding gradients, re-
spectively, as previously discussed in this section in terms of the activation function.
For this reason, implementing weight initialization strategies can help choose suitable
initial parameter values. However, the correct weight initialization strategy often de-
pends on the choice of the activation function. For example, the He initialization is
specifically designed for networks that employ the ReLU activation function [24]. An-
other common technique is random initialization, which samples weight values from
a normal or uniform distribution. A further strategy consists of keeping the output
variance constant across the whole network. This helps avoid exploding and vanishing
gradients can be avoided. For this purpose, the initial weights are scaled depending
on the number of neurons in neighboring layers and the initial values of the biases are
set to zero. This is the strategy implemented by Xavier initialization [25].

2.4.6 Hyperparameter tuning

The choice of hyperparameters deeply impacts an NN’s predictions and, in turn, its
performance. Therefore, tuning these hyperparameters during the design of the NN’s
architecture is of great importance. The following will describe some of the most
common methods to achieve this.

A common method for tuning hyperparameters is to define a discrete subset of the
so-called hyperparameter space. This space is multidimensional, with each dimension
representing a distinct hyperparameter. In this approach, a NN is trained for each
combination of hyperparameters within the subset. These combinations form a so-
called grid. Each of the trained NNs is then evaluated using a chosen metric on a
test dataset, separate from the training data. This helps to measure the performance
of each NN when encountering previously unseen data. Therefore, comparing the
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Figure 2.9: GP estimate of a function based on a given set of data points [27].

evaluation results for each NN reveals the best combination of hyperparameters on
the grid. This method is straightforward to implement but has the disadvantage that
it can be computationally expensive and lacks sensitivity to important hyperparameter
values outside of the predetermined grid. This tuning method is called Grid Search.

Another technique comes into play when optimizing an objective function of an
unknown analytical form that is computationally expensive to evaluate. In the field of
machine learning, it is particularly useful for determining the set of hyperparameters
that minimizes or maximizes the objective function. The objective function typically
represents a performance metric of the NN. This technique involves choosing the hy-
perparameters to evaluate based on their likelihood of success in optimizing f . This
approach leads to a more efficient optimization of the NN’s performance compared
to methods like Grid Search, where each possible combination of hyperparameters is
evaluated. This technique is called Bayesian Optimization (BO) and will be discussed
in the following. A more in-depth overview is provided by [26].

Bayesian Optimization is a decision-making strategy that employs Bayesian Infer-
ence [28] to optimize an unknown objective function. In the context of machine learn-
ing, this objective function represents an evaluation metric. In the case of regression
tasks, the goal is to minimize evaluation metrics like MAE, so that the optimization
problem takes the form:

min
x∈A

f(x) . (2.10)

Here, x represents a set of hyperparameters within a predefined region A of the hy-
perparameter space and f represents the evaluation metric.

To simplify the optimization process, BO works with a so-called observation model.
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The role of this observation model is to approximate the unknown analytical form of
f and thus predict the NN’s performance for a given set of hyperparameters. This
observation model is based on prior beliefs, which represent initial assumptions about
the probabilistic distribution of the objective function f over the different hyperpa-
rameters within A. Gaussian Processes (GP) are often implemented to define this
initial model. As further evaluations are conducted and thus more information about
f becomes available, the initial model is updated into a so-called posterior distribu-
tion according to Bayes’ Theorem. This is a refined approximation of the metric f , or
NN’s performance, by the observation model. Figure 2.9 provides an example of a GP
estimation of an unknown function (true function) with an observation model by indi-
cating the (GP) mean and variance (confidence interval) of the observation model for
a given hyperparameter after evaluating the true function at different hyperparameter
values (observed values).

With each subsequent evaluation, the observation model becomes increasingly ac-
curate. Nevertheless, the goal is not to precisely reproduce the true function, as this
would involve high computational costs. Rather, the aim is to efficiently identify the
optimal hyperparameter values that minimize (or maximize) the true function f . The
example of a BO process shown in both Figure 2.9 and Figure 2.10 aims to maximize
the true function. Unlike the Grid Search method, where the sets of hyperparame-
ters to evaluate and their order of evaluation are predetermined, BO takes a different,
more efficient approach. The sets of hyperparameters to evaluate are not fixed be-
forehand. Instead, it is a dynamic process guided by the BO algorithm. Once a set
of hyperparameters has been selected, an NN with these hyperparameters is trained.
Subsequently, the performance (f) of this NN is evaluated using test data. Therefore,
each evaluation of a given set of hyperparameters yields a further value of f , new infor-
mation about f . As previously discussed, the observation model that approximates f
is updated with each new evaluation to include the newly gained information. There-
fore, it provides a forecast of which sets of hyperparameters are likely to optimize f
(the performance of the NN) based on current observations. The BO strategy focuses
on identifying and selecting the most promising set of hyperparameters to evaluate
next. For this purpose, a so-called acquisition function measures the probability of
improvement when evaluating f for a given set of parameters.

There are two different objectives during the optimization process that the acqui-
sition function aims to balance. On one hand, the selection of hyperparameters that
yield a low predicted value of f by the observation model in case of minimization or a
high predicted value of f in case of maximization (exploitation). On the other hand,
the exploration of the hyperparameter space by choosing hyperparameters that result
in high uncertainty by the observation model (exploration). This is important because
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Figure 2.10: Acquisition function of GP estimate based on a given set of data points
of a function [27].

evaluating f at regions of high uncertainty can yield valuable information regarding
f . To achieve a balance between both objectives, the acquisition function generally
consists of two terms, an exploitation and an exploration term, representing these ob-
jectives. A popular acquisition function is Upper Confidence Bound (UCB), which is
defined for minimization problems as:

aUCB(x, β) = µ(x)− β · σ(x). (2.11)

In this case, µ(x) represents the mean of the current observation model for a given
set of hyperparameters x and, with that, the expected value of f . As σ(x) represents its
standard deviation, it describes the prediction uncertainty of the observation model for
a given x. β is a predetermined, positive constant that describes the balance between
the exploitation and exploration terms. This means that the maximum of a points
to the most promising set of hyperparameters to evaluate next according to current
observations. Therefore, the iterative process of evaluating the sets of hyperparameters
that maximize a can lead to convergence towards the global minimum (or maximum) of
f . Figure 2.10 shows the acquisition function corresponding to the observation model
in Figure 2.9. In this example, the objective of BO is to maximize the true function.
The acquisition function exhibits a global maximum at the highest possible value of the
current GP estimation within the confidence interval, indicating the high potential for
improvement if the true function is evaluated at that hyperparameter value. The next
step involves evaluating the true function at the location of the global maximum of the
acquisition function, after which the GP estimation (observation model) is updated
accordingly.
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Chapter 3

Analysis

This chapter presents a detailed description of the analysis methods implemented in
this thesis. The primary objective of the analysis is to develop a robust DNN model
able to effectively interpolate the training data obtained from ALICE measurements
and also to extrapolate it primarily in the energy dimension beyond the energy range
covered by the LHC. A proof of principle is provided by a previous study performed on
PYTHIA simulations [29], which demonstrated that particle-production observables
can be successfully interpolated and extrapolated using neural networks. Also, in this
thesis, PYTHIA is used to evaluate the extrapolation performance of a given model
architecture.

In the first section of this chapter, a description of the different datasets utilized
in the analysis is provided. Then, the basic characteristics of the implemented DNN
model are introduced. Subsequently, data preparation and hyperparameter tuning
procedures are outlined. These analysis methods lay the foundation for the estimation
of the systematic uncertainties associated with the DNN models.

3.1 Datasets

3.1.1 ALICE data

This thesis utilizes data from a comprehensive analysis of charged-particle production
measured with ALICE during LHC Run 1 and 2 (2009 - 2018). The dataset contains pp
collisions at the following center-of-mass energies:

√
s = 2.76, 5.02, 7, 8, and 13 TeV [3].

Two different observables are considered: the charged-particle multiplicity distribution
and the charged-particle transverse momentum spectrum within the kinematic range
0.15 GeV/c < pT < 10 GeV/c and |η| < 0.8. Only collisions with at least one charged
particle in this kinematic region are considered. A systematic uncertainty related to
the analysis procedures is assigned to the data and should be interpreted such that
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the true data point could fall anywhere within the quoted bounds.
Figure 2.4 presented in Section 2.3 shows the Nch distributions (left) and pT spectra

(right) measured with ALICE, which are the basis for this thesis. The Nch distribu-
tions start at Nch = 1 and have different multiplicity ranges for each center-of-mass
energy. These distributions have a data point for each multiplicity within the given
range. The transverse momentum spectra consist of 46 pT-intervals of logarithmically
increasing width ranging from pT = 0.15 GeV/c up to 10 GeV/c. The corresponding
systematic uncertainties, represented by error bands, are barely visible due to their
small magnitude.

3.1.2 PYTHIA simulations

The primary goal of the analysis is to develop a model able to extrapolate to unmea-
sured center-of-mass energies. As these regions have not been explored experimentally,
an assessment of the model’s extrapolation capabilities is not possible based on ALICE
data. However, data from Monte Carlo simulations can be used for testing purposes.
These simulations can generate data at any given center-of-mass energy, which allows
for training a model on the simulated data at the same LHC energies as the ALICE
measurements presented in Subsection 3.1.1 and subsequently testing its interpolation
and extrapolation capabilities across unmeasured

√
s regions.

The simulated data is obtained using the Monte Carlo event generator PYTHIA
with the Monash tune [2]. Proton-proton (pp) collisions are simulated at the LHC
energies for which the ALICE measurements are available (

√
s = 2.76, 5.02, 7, 8,

13 TeV) as well as other center-of-mass energies (
√
s = 0.2, 0.5, 0.9, 1.5, 5.36, 13.6,

14, 20, 27, 50, 100 TeV) for testing the model performance. The test energies in the
simulation are motivated as follows.

√
s = 0.2 TeV is the highest energy recorded

at the Relativistic Heavy Ion Collider (RHIC) [30].
√
s = 0.9 TeV is the minimum

center-of-mass energy for pp collisions at the LHC. Additionally, pp collisions were
measured at

√
s = 0.9 TeV in LHC Run 1 and, more recently, LHC Run 3. The

measurements from LHC Run 3 include Pb–Pb collisions at
√
sNN = 5.36 TeV and pp

collisions at
√
s = 13.6 TeV. The LHC is built to reach a maximum center-of-mass

energy of
√
s = 14 TeV. A proposed upgrade of the LHC, the High-Energy Large

Hadron Collider (HE-LHC), foresees a potential increase in the maximum center-of-
mass energy to

√
s = 27 TeV, while the Future Circular Collider (FCC-hh), envisioned

as the successor to the LHC, is anticipated to reach center-of-mass energies of up to
√
s = 100 TeV [31]. Including simulations at

√
s = 0.5 and

√
s = 1.5 TeV in the

dataset serves the purpose of improving the outcome of the hyperparameter scan as
will be discussed further in Section 3.4 of this chapter.
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Figure 3.1: Charged-particle multiplicity distributions (left) and pT spectra (right) for
pp collisions at various center-of-mass energies simulated with PYTHIA.

The simulatedNch distributions for each of the previously mentioned center-of-mass
energies are shown in Figure 3.1 (left), while the pT spectra are shown in Figure 3.1
(right). Each color in the figure represents a different

√
s value. As seen in Figure 2.4,

the Nch distributions and pT spectra at different center-of-mass energies tend to lie
very close to each other, making it difficult to discern the individual spectral shapes.
Therefore, the simulated data shown in Figure 3.1 is scaled with a

√
s -specific factor

for better visibility. This means that Nch distributions and pT spectra with the same
√
s value are scaled with the same factor. In this thesis, the visual scaling will be

implemented in all figures containing Nch distributions and pT spectra. The Nch range
of each multiplicity distribution is selected such that data points with large statistical
fluctuations are not present in the dataset and thus avoid possible bias during the
training of the DNN caused by the fluctuating points. Since the probability for high
Nch diminishes with decreasing

√
s , the ranges are usually shorter for lower center-

of-mass energies. In contrast, the pT-range is the same for all simulated pT spectra,
reaching up to 10 GeV/c. An overview of the number of events, the selected Nch range,
the visual scaling factor and motivation for each simulated energy is given in Table 3.1.
Since the Nch distributions have a high data point density, only data points with odd
Nch values are shown in Figure 3.1 (left) and all further Figures in this thesis depicting
Nch distributions.
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√
s (TeV) events (M) max. Nch visual scaling motivation
0.2 27.66 35 10−3 RHIC
0.5 11.11 37 10−2 -
0.9 13.29 42 10−1 LHC minimum
1.5 20.42 48 100 -
2.76 8.72 52 101 training
5.02 7.16 56 102 training
5.36 11.82 60 103 LHC Run 3 Pb–Pb
7 11.89 60 104 training
8 9.80 63 105 training
13 12.06 67 106 training
13.6 14.22 70 107 LHC Run 3
14 14.26 74 108 LHC maximum
20 26.94 77 109 -
27 22.29 85 1010 HE-LHC
50 22.55 90 1011 -
100 4.92 95 1012 FCC-hh

Table 3.1: Number of events, maximum selected Nch, factor for the visual scaling of
the data and motivation for each simulated center-of-mass energy.

3.2 Baseline model architecture

This thesis aims to use deep neural networks to model charged-particle spectra from
ALICE measurements. The choice of model architecture is complex, so it is important
to establish some basic characteristics of the model before searching for the optimal
model architecture. The modeling in this thesis is performed using the deep learning
software Keras [32], which acts as an interface for TensorFlow [33], a machine learning
library. Keras simplifies the design and training of artificial neural networks, while the
computations are handled by TensorFlow.

Since the dataset comprises both Nch distributions and pT spectra, two distinct
DNN models sharing a baseline architecture are employed. However, variations in the
architecture are allowed to better take the distinctive spectral shapes of each observable
into account. The best model structure for each observable is selected based on the
results of a hyperparameter scan, which will be discussed in Section 3.4. The DNN
model is constructed through the implementation of ensemble learning. This concept
will be explained in Subsection 3.5.1.

The baseline architecture for the DNN models consists of a fully connected, feedfor-
ward deep neural network. The input layer contains two input neurons corresponding
to the two input features of each model, which are the center-of-mass energy and
either Nch for multiplicity distributions or pT for transverse momentum spectra, as
illustrated in Figure 3.2. The baseline architecture for the DNN models also contains
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Figure 3.2: Illustration of the baseline architecture for the DNN models.

hidden layers with a nonlinear activation function and a constant number of neurons
per layer. The output layer has a linear activation function and consists of a sin-
gle output neuron. The corresponding output feature is P (Nch) for the multiplicity
distribution or, in the case of the transverse momentum spectra, the pT-dependent
charged-particle production rate (yield). The weights and biases in each hidden layer,
as well as the output layer, are initialized before training. Furthermore, the elastic
net weight regularizer, introduced in Subsection 2.4.4, is integrated into each hidden
layer to limit the model’s complexity. The corresponding regularization term to the
loss function is a linear combination of both the L1 and L2 penalty terms with the
regularization factors λ1 and λ2, respectively. These factors determine the strength of
the regularization.

The adjustment of the model’s parameters during training is guided by an opti-
mizer. The chosen loss function is the Mean Absolute Error (MAE), which is also the
metric selected to evaluate the model performance on the test data in the case of the
PYTHIA-trained DNN model. The model’s training includes an early stopping fea-
ture, which monitors the validation loss with a patience of 15 epochs. The minimum
learning rate that can be reached is set to 10−8. Also, as indicated in Subsection 2.4.5,
a batch size corresponding to a power of two (2x) is selected for the training.

In this thesis, DNNmodels using both data from ALICE measurements and PYTHIA
simulations are trained for Nch distributions and pT spectra. This results in four dif-
ferent DNN models. To maintain clarity, DNN models trained on ALICE or PYTHIA
data are referred to as "ALICE DNN models" or "PYTHIA DNN models", respec-
tively. To distinguish the PYTHIA-simulated data from the ALICE measurements,
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the former is referred to as "sim" and the latter as "data" in all Figures in this thesis.
Furthermore, training, validation and test data are referred to as "train", "val" and
"test", respectively. The predictions for the training energies (LHC energies) are called
"parametrizations" and those for the chosen test energies are called "extrapolations".

3.3 Data preparation

A crucial step before training the deep neural network model is preparing the data to
achieve the optimal model performance. This section presents the data preparation
methods implemented in the analysis. First, the motivation for scaling the output
values (P (Nch) or pT-dependent yield) is discussed, followed by the motivation for
scaling the input values (

√
s and Nch or pT). Additionally, a detailed explanation of

the data split into training and validation, the augmentation of the data within the
corresponding data uncertainties and the motivation for changing the order of data
points before feeding them into the network is provided.

A model architecture is chosen as an example to show the effects that certain data
preparation techniques have on the model’s performance. The importance of applying
these techniques is emphasized by comparing the performance of the model in two
scenarios: first, where all methods are applied before training, and second, where one
of these methods is omitted in the data preparation process. The comparison is made
for two of the preparation methods, showing their influence on the model. In each
case, the model is trained on the PYTHIA-simulated pT spectra at

√
s = 5.02 TeV

and
√
s = 7 TeV and subsequently tested at

√
s = 13.6 TeV. This model consists

of a deep neural network with four hidden layers of 64 neurons, the swish activation
function and a regularization factor of λ1 = λ2 = 5 · 10−5. Furthermore, all random
seeds are set to a constant value and the batch size is set to 26 = 64. The Adam
optimizer is used with a maximum learning rate of 0.05. Additionally, random uniform
initialization is utilized. In the upper part of Figure 3.3, the pT spectra predicted by
the PYTHIA DNN model when all data preparation methods are applied are shown
together with the corresponding PYTHIA-simulated data. The simulated pT spectra
are depicted by data points with each color representing a different

√
s . The energies

used for training are
√
s = 5.02 TeV and 7 TeV. Out of the corresponding spectra,

70% of randomly chosen data points are used for training and 30% for validation. The
spectrum at

√
s = 13.6 TeV is used for testing the model’s extrapolation performance.

The circle markers represent the data used for training, while the diamond markers
represent the validation data and the cross markers the test data. The predictions
of the PYTHIA DNN model are represented by lines. Solid lines are used for the
training energies (

√
s = 5.02 TeV and 7 TeV) and a dashed one is used for the test
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Figure 3.3: pT spectra predicted by the PYTHIA DNN model at
√
s = 5.02, 7 TeV

(training) and 13.6 TeV (test) when all data preparation methods are applied.

energy (
√
s = 13.6 TeV). As mentioned in Subsection 3.1.2, all spectra are scaled

with an
√
s -dependent factor for better visibility. The factor for visual scaling of

each
√
s value is listed in Table 3.1. The lower part of Figure 3.3 shows the ratio

between the simulated and the predicted spectra for a given
√
s . Here, it illustrates

good agreement between the predicted and simulated spectra at the training energies.
Some deviations of up to 30% are seen in the low pT region in the case of the energy
extrapolation (

√
s = 13.6 TeV). However, the remaining pT spectrum shows a similar

agreement with the test data as seen for the training energies (
√
s = 5.02 TeV and

7 TeV).
Wide ranges of values within the training data can, among other issues, lead to

vanishing or exploding gradients of the loss function during backpropagation. These
effects were discussed in Subsection 2.4.5. Large values are often given a more signifi-
cant role during training than smaller values, which can make it difficult for the model
to learn correlations within the data without being misguided by the differences in
scale. Therefore, data scaling prior to training is helpful to achieve a more balanced
representation of the data during the learning process. In the following, the scaling of
the output values and, later, the input values is discussed.

31



3. Analysis

pT (GeV/c)

10
3

10
0

10
3

10
6

10
9

10
12

10
15

 1
 / 

N
ev

t,
N

ch
>

0
d2 N

/(d
p T

d
)(

Ge
V/

c)
1

PYTHIA DNN model
pp collisions, charged particles
| |< 0.8, 0.15 < pT < 10 GeV/c
scaled for visibility

data preparation:
no log scaling of pT

PYTHIA DNN model
pp collisions, charged particles
| |< 0.8, 0.15 < pT < 10 GeV/c
scaled for visibility

data preparation:
no log scaling of pT

model pred:
5.02 TeV 
7 TeV 
13.6 TeV 

train sim
val sim
test sim

1 10
pT (GeV/c)

0.7

1

1.3

si
m

 / 
m

od
el pT (GeV/c)

10
5

10
2

10
1

10
4

10
7

10
10

10
13

10
16

 1
 / 

N
ev

t,
N

ch
>

0
d2 N

/(d
p T

d
)(

Ge
V/

c)
1

PYTHIA DNN model
pp collisions, charged particles
| |< 0.8, 0.15 < pT < 10 GeV/c
scaled for visibility

data preparation:
no log scaling of s

PYTHIA DNN model
pp collisions, charged particles
| |< 0.8, 0.15 < pT < 10 GeV/c
scaled for visibility

data preparation:
no log scaling of s

model pred:
5.02 TeV 
7 TeV 
13.6 TeV 

train sim
val sim
test sim

1 10
pT (GeV/c)

0.5

1

1.5
si

m
 / 

m
od

el

Figure 3.4: pT spectra predicted by the PYTHIA DNN model at
√
s = 5.02, 7 TeV

(training) and 13.6 TeV (test) in case pT (left) or
√
s (right) is not scaled logarithmi-

cally before training.

The output values for both the Nch distributions and the pT spectra span many
orders of magnitude. When minimizing the loss function during the training process,
reducing large absolute deviations between the model predictions and training data
in low Nch (or pT) regions will be more rewarding than addressing the much smaller
deviations in high Nch (or pT) regions. Therefore, the low Nch (or pT) regions with
the high values dominate the training process. This results in a deteriorating model
performance towards high Nch (or pT). To avoid this effect, the values are scaled
logarithmically prior to training. The output of the model becomes log [P (Nch)] for
the Nch distributions and log [(1/Nevt,Nch>0) · d2N/(dpTdη)] for the pT spectra.

The second aspect to consider is the range of the input values fed into the DNN.
Wide ranges of input values can, like in the case of the output values, cause vanishing
and exploding gradients of the loss function, which destabilizes the training process.
Since Nch as well as

√
s span ranges of 1 ≤ Nch ≤ 100 and 0.2 TeV ≤

√
s ≤ 100 TeV,

these input features are also scaled logarithmically. The pT intervals in the pT spectra
have logarithmic widths. The resulting higher data point density towards low pT

values poses an additional bias for the model. This can be rectified by the logarithmic
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scaling of the pT values, as well. The effects of logarithmic scaling can be seen by
comparing the performance of the PYTHIA DNN model introduced in the previous
section when all data preparation methods are applied with the performance when no
scaling of the input values is performed before training. In Figure 3.4, the pT spectra
predicted by the PYTHIA DNN model are shown together with the corresponding
PYTHIA-simulated spectra for the case when pT (left) or

√
s (right) are not scaled

logarithmically prior to training. The extrapolation performance of the DNN model
is represented by the ratio between the simulated data and the predictions, which is
worse than the one shown in Figure 3.3 where all data preparation methods are applied.
When the pT values are not scaled before training, the extrapolation performance in the
mid-pT region deteriorates significantly. In the case that the

√
s values are not scaled

prior to training, the extrapolated spectrum shows large deviations from the simulated
spectrum at

√
s = 13.6 TeV of up to 50%. These observations highlight the importance

of scaling the input values as a data preparation method before training a DNN model.
In summary, the input of the model for each dataset becomes (log [pT] , log [

√
s ]) and

(log [P (Nch)] , log [
√
s ]), respectively.

A common method discussed in Subsection 2.4.4 to improve the model consists
of splitting the data into subsets of the original dataset for training and validation,
respectively. In this thesis, the original dataset is randomly split into 70% training and
30% validation data. In order to correctly describe the edges of the spectra, the data
points corresponding to the lowest and highest Nch (or pT) values are always included
in the training set.

The uncertainties in the data imply that the respective data points have a certain
freedom to exist within the error bounds. If the model was trained only with the nom-
inal values, these uncertainties would not be taken into account. Therefore, numerous
artificial data points are sampled within these error bounds. Since the uncertainties of
the ALICE data are systematic, the artificial data points are sampled out of a uniform
distribution within the uncertainty of the original data point. The uncertainties of the
PYTHIA-simulated data are statistical. Therefore they are sampled from a Gaussian
distribution with a width corresponding to the error bounds.

To avoid any potential bias in the neural network caused by the ordering of the
data during the training process, the data points are shuffled prior to training. This
introduces randomness into the training process and therefore improves generalization,
as the model does not memorize patterns specific to the original order of the data.
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sampling: discrete values
optimizer layers neurons activation initializer
Adam (A) 2 32 ReLU (RE) RandomNormal (RN)
Nadam (N) 3 64 SELU (SE) RandomUniform (RU)

4 128 swish (SW) GlorotNormal (GN)
256 softplus (SP) TruncatedNormal (TN)

VarianceScaling (VS)

sampling: intervals (logarithmic)
λ1 λ2 learning rate

min 5 · 10−8 5 · 10−8 1 · 10−4

max 5 · 10−1 5 · 10−1 1 · 10−2

Table 3.2: Hyperparameter space for the search.

3.4 Hyperparameter scan

The power of DNN models lies in their ability to recognize underlying patterns in the
training data. Therefore, models with a sufficient degree of complexity are expected
to generate similar predictions for the same training set, independent of their spe-
cific architectures. However, when the models venture beyond the value range of the
training set they lack the necessary constraints to provide consistent predictions. In
this extrapolation regime, the models have a greater freedom to generate predictions,
which strongly depend on the chosen model architecture. One of the primary objec-
tives of this thesis is to develop a robust DNN model capable of producing accurate
extrapolations to unexplored center-of-mass energy regimes. Therefore, it is important
to evaluate the extrapolation performance for a given model architecture at these

√
s

regimes far away from the training data. As the ALICE measurements used in this
thesis are only available at five LHC energies, data from PYTHIA simulations is uti-
lized for this purpose. The simulated data, described in Subsection 3.1.2, spans a wide
energy range of up to

√
s = 100 TeV. The extrapolation performance of a given model

architecture is assessed through its consistency with the simulated test data. The ex-
trapolation performance is expected to deteriorate with increasing distance between
the extrapolation energy and those used for training. Therefore, the search for the
best set of hyperparameters focuses on finding a model architecture with good extrap-
olation capability. To accomplish this, a hyperparameter optimization framework for
Keras, called KerasTuner [32], is used. This framework offers a systematic approach to
identifying the optimal hyperparameters for a neural network model by exploring the
hyperparameter space. The selected strategy for the hyperparameter scan is Bayesian
Optimization. In this thesis, an increased β value of 3.6 (default: 2.6) is used to ex-
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obs. lay. nod. opt. lr act. init. λ1 λ2
P(Nch) 2 32 A 1.16 · 10−3 SW RU 4.26 · 10−4 2.08 · 10−6

pT spectrum 4 64 A 4.61 · 10−3 SP TN 9.05 · 10−7 6.55 · 10−6

Table 3.3: Top-performing model architectures from the hyperparameter scans. More
well-performing architectures of the scans are listed in Table A.1 of the Appendix.

plore the hyperparameter space more thoroughly. The possible values to explore for a
given hyperparameter can be either discrete or sampled from a specific range of values.
Logarithmic sampling is typically used for hyperparameters with possible values that
span many orders of magnitude. Therefore, it is implemented for the learning rate as
well as the regularization factors λ1 and λ2. Predefined sets of values are chosen for
the optimizer, the number of layers, the number of neurons, the activation function
and weight initialization. The search space explored during the hyperparameter scan
is presented in Table 3.2.

During the scan, multiple models are trained and evaluated using different hyper-
parameter combinations. To evaluate the performance of each model, the MAE is
calculated for the test dataset. Most of the datasets simulated for this thesis were mo-
tivated by center-of-mass energies from (possible) collider experiments, as summarized
in Table 3.1. However, this set of energies is biased towards high energies, so that the
MAE values from the scan are dominated by them. Therefore, PYTHIA-simulated
data at

√
s = 0.5 TeV and 1.5 TeV is added to the test dataset to provide a more

equal representation of low and high center-of-mass energies in the scan results.
The scan consists of two hundred trials, representing the number of hyperparam-

eter sets or combinations to be evaluated. Each trial is executed three times and
the resulting MAE value is calculated as the average of the MAE values of all three
iterations. This is done to obtain a more reliable performance estimation for each hy-
perparameter configuration since the weights and biases of the network are initialized
randomly at the beginning of training. As a direct consequence, models that generate
stable predictions despite random variations within the network receive lower MAE
values compared to unstable models. This aspect plays a crucial role in estimating the
systematic model uncertainties caused by inherent randomness within the network, as
will be discussed in the next section. Since the hyperparameter scan involves training
two hundred model architectures with three different executions each, performing the
hyperparameter scan is computationally expensive, especially if each of the models is
trained with the full number of epochs. To address this issue, an early stopping feature
is implemented not only to prevent overfitting but also to avoid spending computing
resources on non-converging models.

Two independent hyperparameter scans are conducted for theNch distributions and
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pT spectra to identify the optimal hyperparameter configurations for each observable.
Table A.1 in the Appendix provides an overview of the ten top-performing model
configurations out of the two hundred trials conducted for each observable. These
configurations represent the hyperparameter values that resulted in the lowest MAE
values, indicating superior predictive capabilities for the specific observable. From the
evaluated models, the hyperparameter configurations with the lowest MAE values are
adopted as the primary DNN models and are listed in Table 3.3.

3.5 Systematic uncertainties

While the DNN model hyperparameters are tuned to provide predictions, especially
extrapolations, that align well with the PYTHIA-simulated test data, it is impor-
tant to identify the potential sources of uncertainty. These uncertainties quantify the
reliability and limitations of the models.

In this section, the systematic uncertainties associated with the DNN models are
discussed. Two potential sources of uncertainty are presented. The corresponding
systematic uncertainties are referred to as ensemble uncertainties and hyperparameter
uncertainties, respectively. They will be discussed in detail in the following subsections.

3.5.1 Ensemble uncertainties

This section focuses on the systematic uncertainties caused by the intrinsic random-
ness of the DNN model, its training process and the training data selection. These
uncertainties are collectively referred to as ensemble uncertainties.

A random seed determines the starting point for the generation of pseudorandom
numbers during the training process. When no specific random seed is set, each train-
ing instance is initialized with different starting conditions, leading to different model
parameters and, with that, different predictions. The corresponding uncertainties are
estimated by systematically varying the random seed within a so-called ensemble. This
ensemble is a collection of many models with the same architecture but trained with
different random seeds. The ensemble uncertainties can then be inferred from the
spread of the individual predictions of each model compared to the mean ensemble
predictions.

One source of ensemble uncertainty is the random initialization of the model’s
parameters defining the initial conditions of the model before being trained on the
data. As the loss function depends on these parameters, their random initialization
also defines the starting point of the loss function in the parameter space. This could
result in finding a different minimum of the loss function during training. Furthermore,
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Figure 3.5: Evolution of the validation loss functions of the ALICE DNN models with
different ensemble seeds for the Nch distributions (left) and pT spectra (right).

the random splitting of the data into training and validation sets affects the training
outcome.

In this thesis, an ensemble consisting of ten models is trained with different random
seeds. The validation loss functions of the ALICE DNN models for different ensemble
seeds are shown in Figure 3.5 as a function of the number of training epochs for
the Nch distributions (left) and pT spectra (right). The validation loss functions of
the PYTHIA DNN models are shown in Figure A.1 in the Appendix. Each curve in
the Figures represents the loss function of a model with a specific ensemble seed. It is
important to mention that the validation data only plays a role in the decision of when
to stop the training process and avoid overfitting. The model parameters are solely
adjusted based on the training data. After the initial fluctuations of the validation
loss functions, they converge to similar values. This shows that the predictions of the
DNN models for the validation data are stable when confronted with variations of the
ensemble seed. Furthermore, the ensemble models for the Nch distributions are trained
for a larger number of epochs than the models for the pT spectra. This is a result of
the more pronounced changes in the shape of the Nch distributions as a function of
the center-of-mass energy compared to the pT spectra.

The training of the ensemble results in ten different predictions for each data
point. In this thesis, the nominal predictions of each DNN model represent the mean
predictions of the corresponding ensemble. The ensemble uncertainty (σensemble) of the
DNN models is calculated as the standard deviation of the predictions of all models
in the ensemble. The relative deviation between the individual predictions and the
mean ensemble prediction for the Nch distributions (left) and pT spectra (right) of the
ALICE DNN models is illustrated in Figure 3.6. The corresponding results for the
PYTHIA DNN models are shown in Figure A.3 in the Appendix. The predictions
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Figure 3.6: Relative deviation between ALICE DNN models trained with different
random seeds and the ALICE DNN nominal prediction for the Nch distributions (left)
and pT spectra (right).

are made for 500 uniformly distributed data points per energy with a multiplicity
range of 1 ≤ Nch ≤ 100 for the Nch distributions and a transverse momentum range of
0.15 GeV/c < pT < 10 GeV/c for the pT spectra. Figure 3.6 shows that the majority
of the predictions are clustered closely around the nominal prediction, demonstrating
that the models are very stable against randomness. The Nch distributions exhibit
some outliers with a relative deviation of up to 75%, in particular at low energies,
which is a direct consequence of the shorter Nch ranges present at lower center-of-mass
energies. This results in the models having more freedom in their predictions for the
high Nch regions of lower

√
s , where no test data constrains the choice of the model

hyperparameters. For the pT spectra, the predictions by the ensemble models are more
consistent than those for the Nch distributions and lie typically within 10%.

3.5.2 Hyperparameter uncertainties

The exploration of different hyperparameter combinations during the hyperparame-
ter scan represents an important source of systematic uncertainty. The primary goal
of the scan is to identify sets of hyperparameters resulting in strong extrapolation
capabilities of the model, evaluated on the PYTHIA-simulated data, as discussed in
Section 3.4. The MAE values of the top-performing model architectures evaluated on
the test data are shown in Table A.1 in the Appendix. Despite being trained on the
same dataset, the top-performing models from the scan still demonstrate variations
in their MAE values. The variations of the ten top-performing models from the scan
are considered to estimate the uncertainties from the choice of the model architec-
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Figure 3.7: Evolution of the validation loss functions of the ALICE DNN models with
different hyperparameter sets for the Nch distributions (left) and pT spectra (right).

ture. Each of these models is trained with a fixed random seed to avoid the inherent
randomness of the model that is already considered in the ensemble uncertainties.
The resulting validation loss functions for each of the ALICE-trained models with the
different hyperparameter sets of the top-performing architectures from the scan are
shown in Figure 3.7 for Nch distributions (left) and pT spectra (right). The loss func-
tions corresponding to the PYTHIA-trained models are illustrated in Figure A.2 in
the Appendix. The evolution of the validation loss as a function of the training epochs
shows a similar trend as the validation loss functions from the ensemble in Figure 3.5.

The hyperparameter uncertainty (σhparams) of the DNN models is calculated as the
mean absolute deviation between the individual predictions by each of the considered
models with different architectures according to Table A.1 and the model with the
top-performing architecture from the hyperparameter scan. In Figure 3.8, the relative
deviation between the predictions of each model architecture and the best-performing
model architecture is depicted for the Nch distributions (left) and pT spectra (right)
of the ALICE DNN models. The relative deviation of the PYTHIA DNN models is
illustrated in Figure A.4 in the Appendix. The Figures are analogous to the ones in
Figure 3.6 and Figure A.3 for the ensemble deviations. However, in this case, the
deviations are not calculated relative to the nominal predictions, but rather relative to
the predictions by the model with the best-performing model architecture trained with
a fixed random seed. All models describe the training data very well. The relative
deviations reveal larger discrepancies between the predictions for energies with a large
distance from the training energy range, like

√
s = 0.5 and 100 TeV. In the case of

the Nch distributions, the predictions show discrepancies of up to 50% and, for the pT
spectra, over 20%. This demonstrates that extrapolations to both lower and higher
energies are more sensitive to changes in the model architecture than those close to
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Figure 3.8: Relative deviation between ALICE DNN models with different hyperpa-
rameter sets and the ALICE DNN nominal prediction for the Nch distributions (left)
and pT spectra (right).

the training energy range. Furthermore, the relative deviations from different hyper-
parameter sets are wider than those from the different ensemble models. Therefore,
the choice of the model architecture is the dominating source of uncertainty.

3.5.3 Total uncertainties

Both the ensemble and the hyperparameter uncertainties contribute to the total sys-
tematic uncertainty of the DNN models. For each predicted point it is calculated as
the root of the square sum over the ensemble and hyperparameter uncertainties:

σtotal =
√
σ2

ensemble + σ2
hparams . (3.1)

The relative model uncertainty of the ALICE DNN models is illustrated in Fig-
ure 3.9 for the Nch distributions (left) and pT spectra (right) within an energy range
of
√
s = 0.5 TeV to 100 TeV. The relative model uncertainty of the PYTHIA DNN

models is depicted in Figure A.5 in the Appendix. The solid lines represent the relative
uncertainties of the parametrizations at LHC energies, while the dashed lines represent
the relative uncertainties of the

√
s extrapolations. Furthermore, each center-of-mass

energy is indicated by a different color. In Figure 3.9, the relative model uncertainties
exhibit a clear

√
s dependence across the entire Nch and pT ranges. This dependence

is generally characterized by a larger uncertainty for extrapolation energies that lie
further away from the training energy range (LHC energies). In the case of the mul-
tiplicity distributions, the Nch range of the available data varies with different

√
s

values. Since lower collision energies have a smaller reach in multiplicity, the model
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Figure 3.9: Relative total systematic model uncertainty for Nch distributions (left) and
pT spectra (right) predicted by the ALICE DNN models.

predictions are less constrained for low-energy extrapolations toward high multiplic-
ity. As a result, the relative model uncertainty gets significantly larger. It is worth
mentioning that P(Nch) approaches zero in high-Nch regions, so their large uncertainty
is less relevant. High-energy extrapolations, where the larger Nch ranges offer more
constraints to the model predictions, have the smallest uncertainties of all energies in
the high-Nch region. In the case of the pT spectra, the pT range stays constant over
all the center-of-mass energies. Here, the relative model uncertainties are very small
for the energies used in the training. The uncertainties become gradually larger for
the
√
s extrapolations, with the highest values at

√
s = 0.5 and 100 TeV. Overall, the

relative model uncertainties of the pT spectra predicted by the ALICE DNN model are
lowest in the mid-pT region, since the predictions are constrained by data from both
low and high-pT regions. However, the uncertainties increase in these two regions,
where the models lose their constraints, as no more data points are available outside
the pT range of the measurement. Both for the Nch distributions and pT spectra, the
ALICE DNN model uncertainties are slightly larger than those of the PYTHIA DNN
model, which is expected since the model architectures were chosen based on their
performance on PYTHIA simulations.
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Chapter 4

Results

This chapter presents and discusses the outcomes of the analysis described in this
thesis. First, the parametrizations and extrapolations of the Nch distributions and pT
spectra by the PYTHIA and ALICE DNN models are presented for an energy range
of
√
s = 0.5 TeV to 100 TeV. The predictions by the PYTHIA DNN models serve as

a crucial quality assurance for the ALICE DNN models since they demonstrate the
extrapolation capabilities of the chosen model architectures. Subsequently, the DNN
interpolation of the pT spectrum is compared to a published power-law interpolation.
Additionally, the limits of the low-energy extrapolation for the PYTHIA DNN models
are explored. Then, the mean multiplicity (〈Nch〉) and mean transverse momentum
(〈pT〉) obtained from the model predictions are presented as a function of

√
s and

compared to those directly derived from the PYTHIA simulation and ALICE data.
Furthermore, the

√
s dependence of the predicted 〈Nch〉 is compared to a power-law

parametrization of the ALICE data similar to the ones shown in Figure 2.5. Finally,
the parametrizations and extrapolations by the ALICE DNN model are compared to
the PYTHIA-simulated data.

4.1 Nch distributions

The upper panel of Figure 4.1 (left) shows Nch distributions from PYTHIA simulations
and those predicted by the PYTHIA DNN model. Each color in the figure represents a
different center-of-mass energy. The circles represent the training data corresponding
to the LHC energies and the crosses indicate the test data corresponding to the chosen
test energies ranging from

√
s = 0.5 TeV to 100 TeV. In contrast to the Figures in

Section 3.3, there are no dedicated validation data points because each of the ensemble
models used to calculate the nominal predictions of the PYTHIA DNNmodel is trained
with different training-validation partitions of the original dataset. As a result, most
data points are used as validation data at least once during the training of the ensemble.
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Figure 4.1: Parametrizations and extrapolations of Nch distributions by the PYTHIA
DNN model (left) and ALICE DNN model (right) at LHC energies ("meas

√
s ") and

chosen test energies ("unmeas
√
s ").

The PYTHIA DNN model predictions are depicted as lines. Solid lines represent the
parametrizations of the training data at LHC energies, while dashed lines represent the
extrapolations to the chosen test energies. The predicted distributions for each center-
of-mass energy encompass a multiplicity range of 1 ≤ Nch ≤ 100. The systematic
uncertainties of the DNN model are depicted as error bands and the uncertainties
related to the data are presented as vertical error bars. The lower panel of Figure 4.1
(left) shows the ratio between the PYTHIA-simulated data at a given

√
s and the

corresponding model prediction. As mentioned in Subsection 3.1.2, all data points
and predictions are scaled for visibility according to the visual scaling factors listed in
Table 3.1. Furthermore, only simulated data points with odd Nch values are shown for
better visualization.

By simulating pp collisions at the chosen test energies using PYTHIA, a test dataset
is provided to compare to the predictions by the DNN model at these unmeasured
energies. Quantifying the deviation between the test data and the corresponding ex-
trapolations allows for evaluating the extrapolation quality of the DNN model. The
prediction accuracy of the model for different energies can be observed in the ratio
between the simulated data and model predictions. A clearer overview of the in-
dividual ratios for each energy is shown in Figure 4.2. The ratio between the Nch
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distributions predicted by the PYTHIA DNN model and those simulated by PYTHIA
demonstrates excellent parametrizations of the LHC energies and extrapolations to the
test energies. At LHC energies, the majority of the predictions display deviations of
less than 2% from the training data. Notably, the model extrapolations to the energies
√
s = 13.6, 14 and 20 TeV are just as accurate as the interpolation to

√
s = 5.36 TeV.

The extrapolations to
√
s = 0.5 and 100 TeV exhibit deviations of 25% and 15%, re-

spectively. These are remarkable results considering that the DNN model was trained
on five LHC energies within a range of

√
s = 2.76 TeV to 13 TeV. The systematic

uncertainties of the model are larger for high multiplicities, especially for low
√
s . As

discussed in Subsection 3.5.3, this effect is caused by the different Nch ranges of each
distribution. Furthermore, the individual ratios in Figure 4.2 show that the deviations
between data and predictions are mostly covered by the model uncertainties across
the whole energy range. This demonstrates that the methods employed to estimate
the model uncertainties successfully describe possible deviations from actual data for
the PYTHIA DNN model. Therefore, it is assumed that the corresponding model
uncertainties for the ALICE DNN model also describe possible discrepancies between
the predictions and reality beyond the LHC energies used for training. The Nch dis-
tributions predicted by the ALICE DNN model and those measured by ALICE are
shown in the upper panel of Figure 4.1 (right). The representation of colors, data
points, parametrizations, extrapolations and uncertainties is analogous to that of Fig-
ure 4.1 (left). Data points are shown for the five LHC energies available from ALICE
measurements. These correspond to the training data for the ALICE DNN model,
indicated by circles. The predictions are shown within a range of

√
s = 0.5 TeV to

100 TeV. The parametrizations of the ALICE data are found to be excellent. The ratio
in the lower panel indicates that they are fully consistent with unity within the sys-
tematic uncertainties of the data and the model. As in the case of the PYTHIA DNN
model, the systematic model uncertainties are larger for high multiplicities due to the
different Nch ranges. However, the predictions by the ALICE DNN model show larger
uncertainties compared to the PYTHIA DNN model. Here, it must be considered that
the model hyperparameters are tuned to PYTHIA. Furthermore, the Nch distribution
at
√
s = 2.76 TeV spans a much smaller Nch range compared to PYTHIA (Nch ≤ 28

vs. Nch ≤ 52). Therefore, the ALICE DNN model lacks some constraints in the Nch

dimension. Nonetheless, the extrapolations exhibit a high degree of stability.
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Figure 4.2: Ratio of the Nch distributions predicted by the PYTHIA DNN model and
those from PYTHIA simulations for all considered center-of-mass energies.
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The individual ratios in Figure 4.2 show that the performance of the PYTHIA
DNN model deteriorates for center-of-mass energies far away from the training ener-
gies. To study the center-of-mass energy dependence of the model performance, the
evaluation metric MAE between the predictions by the PYTHIA DNN model and the
PYTHIA-simulated data is calculated separately for each of the considered center-
of-mass energies. A small MAE value represents a better model performance. It is
expected that the model predictions are less accurate with increasing distance from
the training energies. Therefore, the dependence of the MAE values from the distance
to the training energies is studied. For this purpose, the center value within the set
of five LHC energies,

√
s = 7 TeV, is chosen as a reference. Since the center-of-mass

energy values are scaled logarithmically for training the model, the logarithmic dis-
tance between them is considered: log (

√
s ) − log (7 TeV). In Figure 4.3 (left), the

resulting MAE values for the predicted Nch distributions by the PYTHIA DNN model
based on the simulated test data are shown as a function of this logarithmic distance
to
√
s = 7 TeV. As before, circles represent training energies and crosses indicate test

energies. Furthermore, the data points are color-coded depending on
√
s . A clear

correlation between the logarithmic distance of a
√
s value to the training energy

range and the predictive power of the model can be observed. However, some MAE
values seem to fluctuate so that the energy dependence deviates from a smooth trend.
Since a different Nch range is selected for each of the simulated Nch distributions, the
number of statistical fluctuations can vary between the distributions of neighboring
energies, slightly affecting the MAE values. To test this hypothesis, the MAE of the
different

√
s can be calculated for a constant Nch range of 1 ≤ Nch ≤ 37, within which

all considered Nch distributions exhibit almost no fluctuations. The resulting MAE
values are shown in Figure 4.3 (right) and demonstrate a smooth, largely symmetrical
trend in their energy dependence. The PYTHIA and ALICE DNN models provide
the most accurate parametrization of the training data at

√
s = 7 TeV. As the cen-

ter value within the set of five LHC energies, the Nch distribution at
√
s = 7 TeV is

constrained by two distributions below (
√
s = 2.76, 5.02 TeV) and two distributions

above this energy (
√
s = 8, 13 TeV), respectively. Therefore, the models receive the

most constraints at this energy.
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Figure 4.3: MAE values of the comparison between Nch distributions predicted by the
PYTHIA DNN model and those from PYTHIA simulations within the Nch ranges in
Table 3.1 (left) and within a range of 1 ≤ Nch ≤ 37 for all distributions (right) as a
function of the logarithmic distance between the considered energies and

√
s = 7 TeV.

4.2 pT spectra

The resulting parametrizations and extrapolations of the pT spectra by the PYTHIA
DNN model (left) and ALICE DNN model (right) are presented in the upper panels
of Figure 4.4. In the lower panels, the ratio between data and model predictions is
depicted. The predicted pT spectra enclose a range of 0.15 < pT < 10 GeV/c and an
√
s range of 0.5 to 100 TeV. The representation of the predictions, data and uncertain-

ties is the same as in previous Figures. The individual ratios between the pT spectra
predicted by the PYTHIA DNN model and those simulated by PYTHIA shown in
Figure 4.5 demonstrate excellent parametrizations and extrapolations of the training
data. The predictions ranging from

√
s = 2.76 up to 20 TeV, are in strong agree-

ment with the corresponding training and test data, with deviations largely within
2%. This shows that the energy interpolation and extrapolation close to the training
energy range demonstrate a similar quality as the parametrizations of the training
data. The extrapolation to

√
s = 0.5 and 100 TeV show deviations of 18% and 10%,

respectively, demonstrating to be more accurate than the energy extrapolation of the
Nch distributions. The deviations in the ratio between the data and the predictions
are mostly covered by the model uncertainties. This proves the effectiveness of the
employed uncertainty estimation methods. Therefore, it is reasonable to assume that
the uncertainties of the ALICE DNN model for the predicted pT spectra span the
possible deviations between predictions and real data at unmeasured center-of-mass
energies, which builds confidence regarding the interpolations and extrapolations per-
formed by the DNN model. The resulting parametrizations and extrapolations by
the ALICE DNN model are presented in Figure 4.4 (right). For all available LHC
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Figure 4.4: Parametrizations and extrapolations of pT spectra predicted by the
PYTHIA DNN model (left) and ALICE DNN model (right) at LHC energies ("meas√
s ") and chosen test energies ("unmeas

√
s ").

energies, the ratio between the data and the model predictions is shown to be largely
consistent with unity within the systematic uncertainties. These results demonstrate
a high consistency of the parametrization with the training data.

The energy dependence of the MAE values of the PYTHIA DNN model can also
be compared for the predicted pT spectra when evaluated on the PYTHIA-simulated
data. These MAE values are shown in Figure A.6 in the Appendix. As observed for
the Nch distributions in Figure 4.3, the model performance clearly depends on the
logarithmic distance of

√
s to 7 TeV. The model performance is best at

√
s = 7 TeV

and gradually worsens with increasing logarithmic distance to this energy.
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Figure 4.5: Ratio of the pT spectra predicted by the PYTHIA DNN model and those
from PYTHIA simulations for all considered center-of-mass energies.
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4.3 Interpolated pp reference

The particle production in central heavy-ion collisions is suppressed due to the presence
of quark-gluon plasma where the partons lose energy in the medium. The Glauber
model describes nucleus-nucleus (AA) collisions as geometric superpositions of multiple
binary pp collisions. Comparing the measured particle production in AA collisions with
the expectation from the Glauber model offers the opportunity to study the properties
of the QGP by means of the nuclear modification factor (RAA).

In 2017, ALICE recorded Xe–Xe collisions at a center-of-mass energy per nucleon
pair of

√
sNN = 5.44 TeV. Since there is no pp reference measurement at the same

energy, in a previous publication an interpolation of spectra at the closest collision en-
ergies (

√
s = 5.02 TeV and

√
s = 7 TeV) was performed in order to calculate an RAA

for Xe–Xe [4]. Specifically, the pT-differential cross sections for pp collisions measured
at
√
s = 5.02 TeV and

√
s = 7 TeV were parametrized with a power-law function

separately for each pT interval. In this thesis, the DNN interpolations are based
not on pT-differential cross sections but on pT spectra with a different normalization
(Nch > 0 events). Therefore, a direct comparison between the published power-law
interpolation and this thesis is not feasible. However, the publication includes a dedi-
cated figure (Figure 2) where the ratio of the interpolated pT-differential cross section
for
√
s = 5.44 TeV to the measured one at

√
s = 5.02 TeV is shown. This ratio quan-

tifies the difference in the spectral shape independent of the normalization. Therefore,
the DNN interpolation presented in this thesis can be compared to the power-law in-
terpolation in [4]. Furthermore, the ratio is shown between the PYTHIA-simulated
pT-differential cross sections at

√
s = 5.44 TeV and

√
s = 5.02 TeV in the publication.

Figure 4.6 depicts these ratios from the publication together with those of the ALICE
DNN and PYTHIA DNN interpolations presented in this thesis with corresponding un-
certainties. It is important to mention that the DNN models are based on five different
LHC energies and are purely data-driven, making no previous assumptions regarding
the functional relationship between the spectral shape and

√
s . In contrast, the pub-

lished interpolation only considers two pp energies and assumes a spectral shape scaling
with (

√
s)

n. As expected, the interpolation by the PYTHIA-trained DNN model aligns
perfectly with the PYTHIA-simulated data. Within their uncertainties, the published
power-law interpolation and the interpolation by the ALICE-trained DNN model are
consistent. For transverse momenta above approximately pT = 2 GeV/c, they align
perfectly. Interestingly, at low pT the power-law interpolation yields larger values than
the DNN interpolation. Here, the ALICE-DNN interpolation shows a perfect align-
ment with the PYTHIA simulations. These collective observations are a strong vali-
dation of the interpolation capabilities of the DNN models. Furthermore, they point
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Figure 4.6: Ratio of pp reference spectrum at
√
s = 5.44 TeV obtained via power-law

interpolation [4] versus DNN interpolation (this work) to
√
s = 5.02 TeV for both

PYTHIA-simulated data and ALICE measurements.

to the power-law interpolation being more accurate at higher pT while deteriorating
towards low pT. Overall, the ratio between

√
s = 5.44 TeV and

√
s = 5.02 TeV is

shown to have a smoother trend for the ALICE-DNN interpolation than the power-law
interpolation.

4.4 Extrapolation to RHIC energies

Figure 4.7 extends the PYTHIA DNN of extrapolations the Nch distributions (left)
and pT spectra (right) shown in Figure 4.1 and Figure 4.4 to a lower energy of
√
s = 0.2 TeV. This is done to study the model’s extrapolation performance at RHIC

energies. The ratio between the prediction and the simulated data at
√
s = 0.2 TeV

demonstrates large deviations of up to 80% for theNch distributions and 50% for the pT
spectra. These discrepancies are not covered by the model uncertainties. This presents
a prominent contrast to the other simulated energies, where predictions are largely con-
sistent with the data within their combined systematic uncertainties. Apparently, the
DNN model fails to correctly describe the PYTHIA data in this low-energy regime,
indicating that the energy dependence learned by the model from the simulated data
at LHC energies is not transferable to the simulated data at RHIC energies. As men-
tioned in Section 2.2, the PYTHIA tune employed in this thesis to simulate the data
is optimized to best describe

√
s = 7 TeV LHC measurements. Previous research [8]

has concluded that this Monash tune of PYTHIA does not accurately describe RHIC
measurements of pp collisions at

√
s = 0.2 TeV. It is argued that the discrepancy be-
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Figure 4.7: PYTHIA DNN parametrizations and extrapolations of Nch distributions
(left) and pT spectra (right) including simulated data at

√
s = 0.2 TeV.

tween simulated and experimental data arises due to incorrect modeling of the energy
dependence of the underlying event. The energy-dependent spectral shapes predicted
by the DNN models at this energy regime diverge from the ones that the Monash tune
simulates. Given that these simulations also deviate from the actual distributions, a
different approach is needed to study the quality of the model’s extrapolation to RHIC
energies. Therefore, in a future extension of the analysis presented in this thesis, a dif-
ferent PYTHIA tune optimized to describe the RHIC energies [8] could be compared
to the DNN model predictions. Another study worth exploring in the future could
involve comparing the

√
s = 0.2 TeV extrapolation of the ALICE DNN model with

corresponding experimental data from RHIC.

4.5 〈Nch〉 and 〈pT〉

Figure 4.8 shows the 〈Nch〉 derived from Nch distributions as a function of the center-
of-mass energy over an energy range of

√
s = 0.5 TeV to 100 TeV. For the PYTHIA

simulations (left) and ALICE data (right), the circles represent training energies and
the crosses the test energies. The solid line represents the model predictions for a
continuous range of energies between

√
s = 0.5 TeV and 100 TeV, with an error band
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Figure 4.8: Mean Nch derived from the Nch distributions predicted by the PYTHIA
DNN model (left) and the ALICE DNN model (right) with the 〈Nch〉 from correspond-
ing PYTHIA simulations and ALICE data.

indicating the model uncertainty. The lower panel of Figure 4.8 (left) depicts the
ratio between the 〈Nch〉 values from the PYTHIA simulations and the 〈Nch〉 values
predicted by the PYTHIA DNN model. In the lower panel of the Figure 4.8 (right),
the same is shown for the 〈Nch〉 values from ALICE measurements and those predicted
by the ALICE DNN model. As illustrated in Figure 2.5, measurements of multiple
experiments indicate that the average number of charged particles produced in a pp
collision follows a power-law trend as a function of

√
s . Therefore, a power-law fit

was performed to the 〈Nch〉 values from the PYTHIA-simulated data and the ALICE
data, respectively, to compare it to the energy dependence predicted by the DNN
models. In Figure 4.8, the power-law fit to the training data of each model at the five
LHC energies is depicted as a dashed gray line. Notably, the fits both to the PYTHIA
simulations and the ALICE data yield the same exponent (s0.125), which is comparable
to the exponents quoted in Figure 2.5.

The 〈Nch〉 values derived from Nch distributions predicted by the PYTHIA DNN
model show a smooth energy dependence over the whole considered

√
s range. They

show an excellent agreement with those from the PYTHIA-simulated Nch distributions
at LHC energies, where the ratio is consistent with unity. Interestingly, the power-
law fit to the five LHC energies perfectly describes the energy dependence of the
PYTHIA-simulated charged-particle production. The predicted energy dependence
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of the 〈Nch〉 values by the PYTHIA DNN model demonstrates a perfect alignment
to the power-law fit within the model uncertainties and starts to deviate slightly for
center-of-mass energies above

√
s = 20 TeV. At

√
s = 100 TeV, the power-law fit and

PYTHIA predict a slightly larger average number of produced charged particles than
the DNN model. These results for the DNN model are remarkable considering that
it is trained on Nch distributions at five LHC energies and is still able to extrapolate
to a wide energy range, largely following an empirically observed power-law scaling of
the charged-particle production as a function of

√
s .

The 〈Nch〉 values derived from the Nch distributions predicted by the ALICE DNN
model are shown in Figure 4.8 (right) together with those derived from ALICE-
measured Nch distributions. These derived 〈Nch〉 values from the ALICE DNN model
are largely consistent with the ALICE data. The ratio shows that the highest devi-
ation at

√
s = 2.76 TeV amounts to about 2%. It is important to mention that the

〈Nch〉 predicted by the ALICE DNN model was calculated for a multiplicity range of
1 ≤ Nch ≤ 100. In contrast, the Nch distribution from the ALICE measurement at
this energy only reaches a multiplicity of Nch = 28. Since a wider Nch range results in
a higher value for 〈Nch〉, this explains the observed deviation between the prediction
and the data at this energy. Remarkably, the energy dependence of the 〈Nch〉 values
derived from the ALICE DNN model aligns perfectly with the power-law fit to the
〈Nch〉 values of ALICE measurements within its uncertainties over an energy range of
√
s = 5.02 TeV up to 100 TeV. Below

√
s = 5.02 TeV, the model predicts a slightly

higher average number of produced charged particles than the power-law fit. This
discrepancy is explained by the much shorter Nch range at

√
s = 2.76 TeV since the

〈Nch〉 value for this energy is included in the fit. The fact that the DNN model trained
on Nch distributions is able to correctly describe the empirically observed energy de-
pendence of a derived observable, 〈Nch〉, over a wide

√
s range highlights the excellent

predictive power of the model.
Figure 4.9 shows the mean transverse momentum derived from pT spectra as a func-

tion of the center-of-mass energy over an energy range of 0.5 TeV ≤
√
s ≤ 100 TeV

derived from the PYTHIA DNN model (left) and from the ALICE DNN model (right).
The representation of data points, model predictions and uncertainties is analogous
to Figure 4.8. The 〈pT〉 values derived from the PYTHIA DNN model show a very
good agreement with the 〈pT〉 values derived from the PYTHIA-simulated pT distri-
butions. PYTHIA predicts a higher average transverse momentum for the produced
charged particles at lower energies and a lower 〈pT〉 at higher energies compared to the
PYTHIA DNN model. The 〈pT〉 values derived from the ALICE DNN model shown in
Figure 4.9 (right) are in perfect agreement with those derived from the pT spectra from
ALICE measurements. The deviations are well below 1%. Overall, the ALICE DNN
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Figure 4.9: Mean pT derived from the pT distributions predicted by the PYTHIA DNN
model (left) and the ALICE DNN model (right) with the 〈pT〉 from corresponding
PYTHIA simulations and ALICE data.

model predicts a smooth energy dependence of 〈pT〉. The larger model uncertainties
of low and high-energy extrapolations indicate the model’s caution in these regions.
Therefore, it is likely that the actual 〈pT〉 values fall within the model uncertainties.
The lowest and highest

√
s extrapolations (

√
s = 0.5 TeV and 100 TeV) demonstrate

a confidence of 2% and 3%, respectively.
The DNN models used in this thesis to predict Nch distributions and pT spectra

are not only trained on data from different observables but also have entirely different
architectures. Since both of these charged-particle spectra describe the same collisions,
a common variable derived from them must be consistent with each other. The mean
charged-particle multiplicity at a given center-of-mass energy can not only be derived
from the Nch distribution but also from the corresponding pT spectrum. This is shown
in Figure 4.10 as a function of the center-of-mass energy for the PYTHIA-simulated
data and the PYTHIA DNN model (left), as well as the ALICE data and the ALICE
DNN model (right). Figure 4.10 (left) shows that the 〈Nch〉 values derived from both
types of PYTHIA-simulated charged-particle spectra (green and pink data points)
align perfectly. The predictions by the PYTHIA DNN models also show an excellent
degree of consistency within their systematic uncertainties, even for

√
s extrapolations

as far as 100 TeV. In the low-energy region, the predicted spectra show a negligible
deviation with the predicted Nch distribution yielding 〈Nch〉 ≈ 4.2 and the predicted
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Figure 4.10: Mean Nch derived from Nch and pT distributions predicted by the
PYTHIA DNN model (left) and the ALICE DNN model (right) with the 〈Nch〉 from
corresponding PYTHIA simulations and ALICE data.

pT spectrum yielding 〈Nch〉 ≈ 4.3. In Figure 4.10 (right) the 〈Nch〉 values derived from
the ALICE-measured pT spectra are slightly higher than those from the measured
Nch distributions, which might be a result of the limited Nch range considered for the
multiplicity distributions. This same tendency towards slightly higher values of 〈Nch〉
is observed for the predicted pT spectra by the ALICE DNN model. Despite this, the
〈Nch〉 values derived from these spectra are largely consistent with one another within
the systematic uncertainties of the models across the whole

√
s range, including the

extrapolations. This can be interpreted as the DNN models understanding the same
evolution of the charged-particle production as a function of

√
s , despite being trained

on different datasets and having a completely different architecture. This is a strong
validation of the predictive power and reliability of the ALICE DNN models.

4.6 ALICE DNN predictions vs. PYTHIA

The ALICE DNN models presented in this thesis allow for predicting the charged-
particle spectra beyond LHC energies. As opposed to PYTHIA, they make no as-
sumptions regarding particle-production mechanisms but predict the charged-particle
spectra solely based on correlations learned from being trained on the ALICE mea-
surements at five different LHC energies. In contrast, the PYTHIA Monash tune is
optimized to best describe experimental measurements at

√
s = 7 TeV. Both PYTHIA

and the ALICE DNN model can predict charged-particle spectra for pp collisions at
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Figure 4.11: PYTHIA-simulated Nch distributions (left) and pT spectra (right) at
different

√
s with corresponding predictions by the ALICE DNN model.

any given center-of-mass energy. The following study quantifies the differences between
the charged-particle spectra predicted by these independent approaches.

Figure 4.11 depicts the Nch distributions (left) and pT spectra (right) predicted
both by PYTHIA and the ALICE DNN model over a center-of-mass energy range of
0.5 TeV ≤

√
s ≤ 100 TeV. The markers represent the PYTHIA-simulated data, while

the lines represent the predictions by the ALICE DNN model which was trained on
ALICE measurements. As in previous Figures, the colors represent different energies.
Solid lines indicate the DNN parametrizations of the ALICE data and dashed lines
the extrapolations to unmeasured energies. The uncertainties of the ALICE DNN
model are depicted as error bands, while the statistical uncertainties of the PYTHIA-
simulated data are depicted as vertical error bars. The lower panels of the Figure show
the ratio between the PYTHIA-simulated data and the predictions by the ALICE DNN
model. The Nch distributions predicted by the ALICE DNN model and those predicted
by PYTHIA are consistent within the multiplicity range Nch . 15. Above this region,
the predictions begin to diverge gradually with increasing Nch. At high multiplicities,
PYTHIA predicts a lower probability for pp collisions than the ALICE DNN model.
The pT spectra predicted by PYTHIA show an almost energy-independent deviation
from those predicted by the ALICE DNN model up to a transverse momentum of
approximately pT = 1 GeV/c. Above this region, the deviations are more pronounced
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Figure 4.12: Mean Nch derived from Nch distributions (left) and mean pT derived from
pT spectra (right) simulated by PYTHIA and those predicted by the ALICE DNN
model.

and show a clear energy ordering. Interestingly, the predictions seem to be the most
consistent at

√
s = 7 TeV, which is the tuning energy implemented in the PYTHIA

Monash tune. At collision energies below
√
s = 7 TeV, PYTHIA predicts softer pT

spectra than the ALICE DNN model. Above the tuning energy, it predicts harder
spectra than the ALICE DNN model.

Figure 4.12 shows 〈Nch〉 (left) and 〈pT〉 (right) from the PYTHIA simulation and
the ALICE DNN model as a function of the center-of-mass energy. Furthermore, they
include the 〈Nch〉 and 〈pT〉 from the ALICE measurements as well as the power-law fit
to this data. The lower panels of the Figure show the ratio between the 〈Nch〉 (left)
and 〈pT〉 (right) values derived from PYTHIA-simulated spectra and those derived
from the predictions by the ALICE DNN model. The 〈Nch〉 values derived from
the Nch distributions predicted by the ALICE DNN model almost perfectly describe
those derived from the PYTHIA-simulated data within the model uncertainties with
deviations of less than 5% over the whole energy range. Furthermore, the power-
law fit to the ALICE data also describes the 〈Nch〉 values from PYTHIA with high
accuracy. At low energies, PYTHIA is most consistent with the ALICE DNN model.
At high energies, its values are best described by the power-law fit to the ALICE data.
Remarkably, the highest consistency between the ALICE DNN model and PYTHIA is
found at

√
s = 7 TeV, which is the tuning energy for the PYTHIAMonash tune used in
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this thesis. For the 〈pT〉 values derived from the pT spectra shown in Figure 4.12 (right),
the deviations between the ALICE DNN model and PYTHIA are more pronounced.
As observed for 〈Nch〉, the values of 〈pT〉 from the ALICE DNN model and PYTHIA
are the most consistent at the tuning energy of the PYTHIA Monash tune. For higher
energies, PYTHIA predicts a higher mean transverse momentum for the produced
charged particles than the ALICE DNN model (up to 8% at

√
s = 100 TeV). In

contrast, it expects a smaller 〈pT〉 for energies below
√
s = 7 TeV (up to 2% at

√
s = 0.5 TeV).
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Summary and outlook

In this thesis, two independent DNN models are trained with the published measure-
ments of charged-particle Nch distributions and pT spectra by ALICE at the LHC
energies:

√
s = 2.76, 5.02, 7, 8 and 13 TeV [3]. The modeled spectra are extended

to a wide energy range from
√
s = 0.5 TeV up to 100 TeV. Furthermore, the Nch

distributions are extrapolated to a multiplicity of up to 100 charged particles, a re-
gion often not accessible experimentally due to missing statistics. In this region, the
model uncertainties are significantly larger due to a lack of experimental constraints.
The predictions of the ALICE DNN models at the LHC energies used for training
show an excellent agreement with the training data. The interpolation and extrap-
olation capabilities are assessed on two PYTHIA DNN models, with predictions be-
ing compared to the PYTHIA-simulated data across the considered energy range of
0.5 TeV ≤

√
s ≤ 100 TeV. The energy interpolation performance is shown to be

excellent. The energy extrapolations are widely consistent with the test data. Ex-
trapolations to higher energies up to

√
s = 20 TeV show the same accuracy as the

energy interpolation. With increasing logarithmic distance to the training energies,
the extrapolation performance deteriorates gradually, but the systematic model un-
certainties increase as well. This thesis has proven that it is possible to parametrize
the measured spectra with DNNs. The DNN models in this thesis have yielded predic-
tions for various unmeasured energies that will be accessible with future experiments.
As these predictions are purely data-driven, they could serve as the LHC baseline
expectation regarding the charged-particle production of high-energy pp collisions.

A previous analysis performed a power-law interpolation of pT-differential cross
sections from pp collisions in ALICE to provide a pp reference for Xe–Xe collisions
at
√
sNN = 5.44 TeV [4]. This allows for the comparison of the DNN model and the

power-law interpolation. The ratio between the proton-proton pT spectra predicted
by the PYTHIA DNN model at

√
s = 5.44 TeV and

√
s = 5.02 TeV shows perfect

agreement with that of the PYTHIA-simulated pT spectra at the same energies. The
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ratio of the predictions by the ALICE DNN model is highly consistent with that of
the PYTHIA simulations at low pT and with the power-law interpolation at high
pT. Furthermore, the DNN shows significantly smaller systematic uncertainties than
the power-law interpolation. These observations point to the DNN approach being
probably more accurate than the power-law interpolation. Therefore, the DNN model
in this thesis is shown to be a powerful state-of-the-art tool for providing a pp reference
for heavy-ion collisions.

The DNN models in this thesis allow for making continuous predictions regarding
the mean number of charged particles expected to be produced in a pp collision as
well as their mean pT over a wide range of center-of-mass energies. In the case of the
ALICE DNN models, the 〈Nch〉 and 〈pT〉 extracted from the predictions describe those
from the ALICE data perfectly, with deviations below 0.5% for 〈pT〉. In the case of
〈Nch〉, a deviation of 5% is observed at

√
s = 2.76 TeV, which can be caused due to the

different Nch ranges between the measurement and the prediction (max. Nch = 27 vs.
Nch = 100). The 〈Nch〉 and 〈pT〉 extracted from the PYTHIA DNN model predictions
not only describe those from the training data perfectly but also capture the overall
trend shown by the simulated data over the whole energy range. More importantly,
the predictions of both DNN models show excellent consistency with the empirically
observed power-law scaling of 〈Nch〉 as a function of

√
s . The ALICE DNN models

provide an estimation of how many charged particles are expected to be produced and
what their average transverse momentum will be in future accelerators like HE-LHC
(
√
s = 27 TeV) or FCC-hh (

√
s = 100 TeV). This could be helpful input for their

planning and experimental design.
The robust ALICE DNN models allow for a comparison between the expected

evolution of the spectral shapes as a function of the center-of-mass energy with that
of the PYTHIA-simulated data. This comparison yield that the PYTHIA simulations
are the most consistent with the measured spectra at

√
s = 7 TeV, precisely the

energy that PYTHIA was tuned to best describe. In general, the ALICE DNN models
predict harder spectra than those simulated by PYTHIA. This means that they predict
a larger production of charged particles. The ratio between the simulated data and
the ALICE DNN model shows a clear energy ordering with the deviations becoming
larger at the tail of the spectra and, especially visible in the case of the pT spectra,
with increasing distance from the training energy range.

A possible extension of the analysis described in this thesis could include a com-
parison of the predictions by the ALICE DNN models to measurements of pp collisions
recorded in LHC Run 3 at

√
s = 0.9 and 13.6 TeV for a direct assessment of their

extrapolation capabilities. A further possibility to exploit the predictive power of
DNNs would be to model the charged-particle production of other collision systems
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at various energies available from ALICE measurements, which include p–Pb, Xe–Xe
and Pb–Pb. It could even be feasible to include the collision system itself as an input
variable to the model together with Nch (or pT) and

√
s , so that a possible correlation

between the collision system and the resulting charged-particle spectra can be mod-
eled. Most importantly, the published ALICE measurements include an even more
fundamental observable: the multiplicity-dependent charged-particle pT spectra over
all previously mentioned collision systems and LHC energies. A further aim beyond
the scope of this thesis will be to model these two-dimensional spectra using a DNN.
This study could provide a more complete picture of the charged-particle-production
mechanisms at play during the collisions over a wide range of center-of-mass energies
beyond the LHC. This approach would parametrize a three-dimensional (

√
s , Nch,

pT) phase space, exploiting the ability of DNNs to capture intricate, multidimensional
patterns within data.
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Appendix A

Supplementary material

obs. lay. nod. opt. lr act. init. λ1 λ2 MAE

P (Nch)

2 32 A 1.16 · 10−3 SW RU 4.26 · 10−4 2.08 · 10−6 0.053
2 64 N 1.00 · 10−2 SW RU 5.00 · 10−8 5.00 · 10−8 0.067
2 64 A 1.00 · 10−2 SP VS 9.03 · 10−6 1.34 · 10−4 0.074
2 128 N 1.52 · 10−3 SP RN 2.10 · 10−6 5.00 · 10−8 0.078
2 128 A 4.85 · 10−4 SW TN 5.00 · 10−8 3.98 · 10−4 0.078
3 32 N 1.00 · 10−2 SE RN 5.69 · 10−5 3.60 · 10−5 0.079
2 64 N 4.07 · 10−3 SP RU 4.05 · 10−5 1.47 · 10−6 0.079
2 64 A 2.61 · 10−3 SW TN 1.68 · 10−6 6.83 · 10−7 0.080
2 128 A 1.00 · 10−2 SP TN 1.45 · 10−5 5.00 · 10−8 0.081
2 256 A 1.48 · 10−3 SP GN 8.82 · 10−5 1.29 · 10−6 0.082

pT spect.

4 64 A 4.61 · 10−3 SP TN 9.05 · 10−7 6.55 · 10−6 0.027
2 64 A 7.17 · 10−3 SP RN 2.41 · 10−6 4.77 · 10−7 0.029
2 256 N 3.44 · 10−3 SW RU 5.00 · 10−8 5.00 · 10−8 0.032
2 128 A 2.01 · 10−3 SW RU 5.00 · 10−8 3.13 · 10−6 0.035
2 64 N 1.00 · 10−2 SW RU 5.00 · 10−8 5.00 · 10−8 0.037
4 32 A 9.26 · 10−4 SW RU 5.00 · 10−8 3.89 · 10−7 0.038
4 256 N 1.25 · 10−3 SW TN 7.36 · 10−8 3.67 · 10−6 0.038
3 64 N 8.82 · 10−3 SP TN 3.11 · 10−6 2.34 · 10−5 0.040
3 256 A 1.00 · 10−2 SP RN 5.00 · 10−8 8.90 · 10−5 0.041
2 32 A 5.84 · 10−3 SW RU 2.56 · 10−6 1.23 · 10−6 0.041

Table A.1: Ten top-performing model architectures from the hyperparameter scan
with PYTHIA-simulated test data.
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Figure A.1: Evolution of the validation loss functions of the PYTHIA DNN models
with different ensemble seeds for the Nch distributions (left) and pT spectra (right).
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Figure A.2: Evolution of the validation loss functions of the PYTHIA DNN mod-
els with different hyperparameter sets for the Nch distributions (left) and pT spectra
(right).
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Figure A.3: Relative deviation for the Nch distributions (left) and pT spectra (right)
from PYTHIA between ensemble models with different random seeds and the nominal
predictions.
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Figure A.4: Relative deviation for the Nch distributions (left) and pT spectra (right)
from PYTHIA between models with different architectures and the nominal predic-
tions.
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Figure A.5: Relative total systematic model uncertainty for the Nch distributions (left)
and pT spectra (right) of PYTHIA.
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Figure A.6: MAE values of the comparison between pT spectra predicted by the
PYTHIA DNN model and those from PYTHIA simulations as a function of the loga-
rithmic distance between the considered energies and

√
s = 7 TeV .
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