EPICAL-2 particle shower analysis
with neural networks

Jan Scharf

Bachelor’s Thesis

September 2023

Institut fiir Kernphysik
Fachbereich Physik
Goethe-Universitat Frankfurt am Main

Supervisor: Prof. Dr. Henner Biisching

Second examiner: Prof. Dr. Harald Appelshauser

Contents

1 Introduction
1.1 Calorimeter physics
1.2 EPICAL-2
1.3 Analysis goal and methods
1.4 Data
2 Concept of neural networks
2.1 The single neuron
2.2 Feedforward neural networks
2.3 Convolutional neural networks
2.3.1 The filter kernel and convolutional layer
2.3.2 Pooling
2.3.3 Convolutional neural network architecture
2.4 Performance metrics
3 Analysis
3.1 Longitudinal hit distribution
3.2 Binary particle classification
3.3 Particle identification L.
3.4 Electron energy regression
4 Summary and outlook
A Dataset parameters
B Longitudinal hit distribution of hadrons

B.1 Pions, kaons, and protons with 200 hits cut . . .
B.2 Hadrons with 150 hitscut

B.3 Pions, kaons, and protons with 150 hits cut . . .

12
14
15

18
19
20
21
22
25
27
27

29
29
34
37
40

47

52

CONTENTS

C

Binary particle classification

C.1 Model architectures
C.2 Models loss of the training process
C.3 LHD of wrongly classified data of the FNN models

Particle identification
D.1 Model architectures

D.2 Confusion matrices

Electron energy regression

58
o8
60
61

63
63
65

67

Chapter 1
Introduction

Particle accelerators are used all over the world to study the physics of the smallest
particles through particle collisions. Many different new particles can be created in
particle collisions. A variety of particle detectors are used to identify and measure
the created particles. Calorimeters form one group of particle detectors that are
used to determine the energy of the created particles. When a particle enters a
calorimeter, it creates a particle shower. Conventional calorimeters measure the en-
ergy that is deposited inside the calorimeter by these particle showers to determine
the energy of the created particle. The digital calorimeter used in this work employs
another principle to measure the energy of the created particle. It measures the spa-
tial distribution of the particle showers, through highly-granular pixels. Therefore,
new methods for the determination of the energy of the particles are needed. Clas-
sical approaches use deterministic functions based on theoretical reasoning to derive
the energy of the particles. In this work, modern machine-learning approaches are
explored for the prediction of the energy of the created particles and the identi-
fication of the type of the created particles. In contrast to classical approaches,
machine-learning approaches determine the energy of the particle through statisti-
cal connections found in the data and do not require input from a theory. The use
of machine learning in high-energy physics is becoming more and more common.
Therefore, this work explores the possibilities of machine-learning approaches for

new digital calorimeters.

1.1 Calorimeter physics

Calorimeters represent a group of particle detectors that are used to determine the
energy of a particle entering the calorimeter. The particle entering the calorimeter
is referred to as the primary particle, which initiates a cascade of inelastic collisions

in the calorimeter. This cascade is called a particle shower. Particles produced

CHAPTER 1. INTRODUCTION

Figure 1.1: Illustration of an electromagnetic cascade [Frall].

in a particle shower through inelastic collisions are called secondary particles. The
physics processes underlying the inelastic collisions depend on the type of the pri-
mary particles. Typically, one can distinguish two types of particle showers: the
electromagnetic and hadronic shower. In the following, a short description of both

types of particle showers is given [KW20].

Electromagnetic showers can be initiated by electrons, positrons, or photons. Fig-
ure 1.1 shows a cascade of an electromagnetic particle shower. A particle shower is
created through repeating processes of photon radiation by electrons and positrons
and electron-positron pair creation by photons. The radiation of photons by elec-
trons and positrons is caused by Bremsstrahlung. An important parameter is the
radiation length Xy, which is defined as the length at which the primary particle’s
energy is reduced to e~! of its initial energy through bremsstrahlung. The radiation
length depends on the characteristics of the calorimeter and especially on its mate-
rial. For example, the length needed for the particle to deposit all its energy in the
calorimeter can be estimated through the radiation length [KW20].

Hadronic showers are produced by hadrons. They can be described through mul-
tiple inelastic processes of the strong and electromagnetic interaction. Figure 1.2

illustrates a cascade of a hadronic shower. Typically, a hadronic shower can contain

10

CHAPTER 1. INTRODUCTION

Y
é"\fdy el.-mag.

cascade

nucleus
hadron.

. . cascade
incoming

hadron

intranuclear n

cascade and spallation

timescale = 10225

Figure 1.2: Ilustration of a hadronic shower [KW20].

Figure 1.3: Illustration of an electromagnetic shower in a readout cell of a conven-
tional electromagnetic calorimeter [Rog].

a hadronic and an electromagnetic cascade. Electromagnetic cascades mostly occur,
when a 70, either being the primary or secondary particle, decays into two photons.
Similar to the radiation length defined for electromagnetic showers, the hadronic
absorption length A, is defined as the length at which the number of hadrons is
reduced to e! of the initial number of hadrons [KW20].

Different calorimeters are used to measure electromagnetic and hadronic showers.
Hadronic calorimeters require a greater depth than electromagnetic calorimeters, as
the hadronic absorption rate is generally larger than the radiation length for the
same material. Therefore, it is not expected that a hadron will deposit all its energy

in an electromagnetic calorimeter. The type of calorimeters covered in this work are

11

CHAPTER 1. INTRODUCTION

layer cables

interface boards

Figure 1.4: Design drawing (left) and picture of the EPICAL-2 (right) [Alm+23].

sampling calorimeters. They are built by two different alternating kinds of layers.
The passive or absorber layers initiate the inelastic collisions, and the active layers
are used to measure the energy and position of the secondary particles. In con-
ventional calorimeters, it is assumed that a particle shower occurs within a single
readout unit or cell. This is shown in Figure 1.3. A single readout unit usually
contains many active and passive layers, with which it can measure the energy of
the secondary particles. The energy deposited in this readout cell is assumed to be
proportional to the energy of the primary particle so that the energy of the primary
particle can be derived from the measurement of the cell. However, the digital pixel
calorimeter used in this work does not follow the principle of conventional calorime-
ter to measure the energy of the primary particle. The next section introduces the
electromagnetic calorimeter used in this work and its method to measure the energy

of the primary particle.

1.2 EPICAL-2

The electromagnetic pixel calorimeter EPICAL-2 is an ultra-high granularity digi-
tal electromagnetic calorimeter prototype. EPICAL-2 was developed to explore the
suitability of ALICE pixel detector (ALPIDE) chips for electromagnetic calorime-
try and its possible application in the Forward Calorimeter FoCal of ALICE at
CERN. The FoCal is an upgrade to the ALICE experiment, it combines the new
high-granularity layers with conventional calorimeter layers [Col23|. In the follow-
ing, the structure of EPICAL-2, a short description of the ALPIDE chips, and the
classical process of measuring the energy of the primary particle are given. Figure 1.4
shows a picture of the EPICAL-2 [Alm+23].

12

CHAPTER 1. INTRODUCTION

Diode

Figure 1.5: Tllustration of an ALPIDE chip and a traversing charged particle [Sch22].

The EPICAL-2 consists of 24 layers. Each layer consists of a 3 mm thick tungsten
absorber and an active layer using two ALPIDE chips side by side with a thickness
of 50 um. Each chip is made up of 512 x 1024 pixels. The two axes in a chip are
named columns and rows. The EPICAL-2 surfaces cover an area of 30 x 30 mm?,
with a sensitive area of 27.6 x 29.9 mm? and 1024 x 1024 pixels. The detector has a
depth of 85 mm and ~ 25 x 10° pixels. The detector is oriented such that the first
layer has no absorber in front of the ALPIDE chips. One of the two ALPIDE chips

in layer 22 is broken and inactive [Alm+23].

Figure 1.5 shows the structure and measuring process of an ALPIDE chip. When
a charged particle traverses the ALPIDE chip, it produces charges in the form of
electron-hole pairs. The electrons are collected by diodes through electrical fields. If
the collected charge exceeds a certain threshold, then the particle is measured. Each
diode represents a pixel of the ALPIDE chip. If the collected charge in the diode
exceeds a certain threshold, then the pixel is measured as a hit. The ALPIDE chip
does not measure the deposited energy of the particle. A more detailed description
of the ALPIDE chips can be found in [Alm+23].

Figure 1.6 illustrates the pixel response to an electromagnetic shower. From the
pixel hits and their coordinates, a three-dimensional spatial hit distribution can be
reconstructed that shows the shape of the particle shower. This spatial hit distribu-
tion can be used to derive the energy of the primary particle. The classical approach
assumes a proportionality between the energy of the primary particle and the total
number of hits £ ~ Np;s. In the following, metrics for evaluating this proportional-
ity based on the dataset used in this work and later introduced are presented. The
first metric to evaluate this proportionality is the linearity between the energy of

the primary particle and the mean of the total number of hits. Figure 1.7 (left)

13

CHAPTER 1. INTRODUCTION

P’ layer 4
i mp g N
Z / .‘ < 1‘ ‘k
layer 3
1 1 i]
\ </
layer 2
[i
S shower
pixel hits Y o)
particles jayer 1
O
/’ i
pixel (-cell) e

layer O

primary electron

Figure 1.6: Illustration of an electromagnetic shower and pixel layers [Rog].

shows this linearity. The mean values of the total number of hits are fitted with the
linear function y = m - x to determine the proportionality factor m. In the bottom
part of the figure, the relative difference between the mean of the total number of
hits and the linear fit function is shown. Figure 1.7 (right) illustrates the energy
resolution of the total number of hits. The energy resolution describes the relative
deviation of the total number of hits from the mean for the respective energy. Lower
energy values show a higher relative deviation of the total number of hits than the
higher values. The energy resolution of this classical approach has a proportionality
o 1

of N TR In Section 3.4 these metrics are compared to the results of the machine

learning approach used in this work and [Alm+23].

1.3 Analysis goal and methods

In this work, the type of primary particle and the energy of electron events are
derived from the spatial distribution of the particle shower using machine learning
algorithms. An overview of the analysis goals, methods, and used data is illustrated
in Figure 1.8. The analysis is split into three tasks. The particle identification (PID)
classifies the type of primary particle of an event. The binary particle classification
(Binary Clasi) serves as a simple version of the particle identification and only
distinguishes two types of primary particles at one energy. The electron energy
regression (EER) predicts the energy of electron events. These tasks are studied with
two different machine-learning algorithms: the feedforward neural network (FNN),

and the convolutional neural network (CNN). As the spatial hit distribution consists

14

CHAPTER 1. INTRODUCTION

1 T T T T L \" /5\ 7\\\ ‘ T T T TTT ‘ T T T T ‘]

- -t S 22 =

EPICAL-2 simulation o 3 [EPICAL-2 simulation J

10* = - = 5 FoA 4

E . 3 20— -

C o] C]

- 1 18— =

3 ,v’.’ 16} {

10 E » 3 C]

C »] 14; X e hits -

- 1 12— N =

. r »]

10° * hits — 10 ") ,

g E r R 113 1535 A

F o E [. -SE 02]

F ---lin.fity =m X A - . E A

L] n N]

6 ;

- b+ ; H | C N 3

hall SqN 1= - - —

HoE. .o . - eeee T

B S L r]

-0.1F - 2 .
Bl l Ll L1 ‘ 1 L1l ‘ | | ‘

1 10 10° 1 10 10

E (GeV) E (GeV)

Figure 1.7: Energy linearity (left) and resolution (right) of the classical approach,
using the total number of hits to estimate the energy of the primary particle [Sch].

of either ~ 25 x 10® pixel responses (being either no hit or a hit) or usually ~ 1 x 10*
hits, it is not a suitable data format for the networks used in this work due to its
high dimensionality. The CNN and FNN require a smaller number of parameters
extracted from the spatial hit distribution to work efficiently. A detailed analysis of

the extracted parameter is given in Chapter 3.1.

1.4 Data

To create the different machine learning models used in this work, data is needed.
The model algorithms require a dataset in which the type of primary particle and its
energy are known for every event. Therefore, the dataset used in this work contains
Monte Carlo simulations of the EPICAL-2 detector response and thus its measure-
ments of the spatial hit distribution. The EPICAL-2 simulation is performed using
Allpix?, which is a generic pixel detector simulation framework based on GEANT4
and ROOT [Alm+23]. A simulated event consists of registered hits and their coordi-
nates. In the simulation, one chip in layer 22 is set inactive, as the chip is broken in
the detector. The dataset consists of different types of primary particles at different
energies. In the following, the energy of the primary particle is denoted with E,;,.
The content of the dataset is described in Table 1.1. The dataset was provided by
[Rog].

15

CHAPTER 1. INTRODUCTION

Data Extracted
parameter
CNN FNN

s (e J{ =)

Figure 1.8: Illustration of the different analysis tasks (green), methods (red), and
data format (blue) they work on.

Particle Epim in GeV Number of events per energy
e~ 1,2,3,4,5 ~ 100, 000
e~ 20, 30, 40, 60, 80 ~ 40,000
o 20, 30, 40, 60, 80 ~ 50,000
wt 20, 30, 40, 60, 80 ~ 50,000
KT 20, 30, 40, 60, 80 ~ 50,000
pT 20, 30, 40, 60, 80 ~ 50,000

Table 1.1: Datasets used in this work. A more detailed description of the number
of events per energy can be found in Appendix A.

Figure 1.9 shows examples of the spatial hit distribution of a simulated hadronic
(left) and electromagnetic (right) shower. Figure 1.10 projects these spatial hit dis-
tributions onto the columns to emphasize the difference between the two types of
showers. The two example events show a significantly different spatial hit distri-
bution and therefore can be distinguished from each other. The pion event has a
narrower particle shower and fewer hits than the electron event. This is important,
as the particle identification and the calculation of the energy of the primary parti-
cle are based on the differing spatial hit distribution. The next chapter provides a

detailed description of the two machine-learning approaches used in this work.

16

CHAPTER 1. INTRODUCTION

20 " g 20 20
1y ” P <
15 : s 15
9 < ; 15 @
10 ‘—u 10 g‘
5 5 10 3
0 ; ’ 0 5
1000 : 1000
800 800 0
600 @ 0 600 P
0 & 200
200 200 & 200 400,
60 200 600 200 O
c rows 800 C
rows 80 o 1000 0

Figure 1.9: Spatial hit distribution of an example pion (left) and electron event
(right).

1000] 1000
12
80
800 800 1 . f
10
. '
. 60
600 4 : 8 600 4 H
] ' @ [@
H :] H =
= =
I U , . 2 | , w
400 R B 400 - !
i ey T
Ca
Y. e [4
200 ot i,," 200 20
2 ' .
:]
0 0 . . . L
[5 10 15 20 [5 10 15 20
layers layers

Figure 1.10: Projection on to the columns for a pion event (left) and electron event
(right). These are the same events as in Figure 1.9.

17

Chapter 2
Concept of neural networks

This chapter introduces the feedforward and convolutional neural network. Before
the detailed description of these neural networks, general terms of machine learning
are introduced and explained. Then, metrics that are used to evaluate the per-
formance of the models shown in this analysis are described. The introduction to

neural networks follows the arguments in [Gér22].

In machine learning and other kinds of data analysis, datasets are collections of
individual data points. A data point is represented by the features of this data
point. However, other features of a data point that are not given or measured might
be of interest to the analysis. These other features usually correlate with the given
features and thus can be estimated or calculated. For example, a healthiness or
nutritional content score, such as the Nutri-score, of a dataset containing different
food items, is calculated. Every food item is defined by salt, fat, and other nutri-
tional contents. Calculating the healthiness or nutritional content score represents
a new derived feature. In machine learning, the given features are called features of

the data point, and the features that have to be derived are called labels.

The class of machine learning algorithms used in this work aims to find a func-
tion that maps the features to the labels. This requires data where the labels are
already known, also called labeled data. All machine learning algorithms requiring
labeled data to find the optimal mapping function are called supervised algorithms.
The process of determining a mapping function is called training. After training,
the algorithm can be used on wunlabeled datasets to predict their labels. There are
two different kinds of labels, continuous values and classes. The group of machine
learning algorithms that handle labels with continuous values is called regression,
and the group of machine learning algorithms that work on class labels is named

classifications. The task of a machine learning algorithm is defined by its objective,

18

CHAPTER 2. CONCEPT OF NEURAL NETWORKS

Output: 2= o (WTx+h)
Activation function: o(a)

Sum: a= TX+

X; X5 X3 Inputs
Figure 2.1: The structure of a single neuron, modified [Gér22].

containing the derived features and their respective data format. The success of
a machine learning algorithm depends on the specific task and the model used to

achieve it.

After this general introduction to machine learning algorithms, three kinds of su-
pervised machine learning algorithms are presented. In this thesis, the analysis uses
two types of algorithms: the feedforward neural network (FNN), and convolutional
neural network (CNN). All the networks consist of base units that are also described

in the following.

2.1 The single neuron

The single neuron is the base unit of the feedforward neural network. Figure 2.1
shows the structure of a neuron. In this example, three input values are used to
calculate the output of the neuron. Generally, the number of input values is defined
by the number of features of the data points. For M features, the input for the data
point i is written as a feature vector or a so-called input vector X' = (zi, 2%, -+, a,).
Every input gets multiplied by an adaptable weight w,,, which is stored in the so-
called weight vector W = (wq,ws, -+ ,wyr). The products are added up with a bias
b. This sum is called activation a. The calculation of the activation a is equivalent
to a linear regression. An activation function o(a) is applied to the activation.
This function usually adds a non-linearity to the neuron. The neuron’s activation
function can be chosen from a set of several different linear and non-linear functions.

The result of the activation represents the output of the neuron. Here, the output

19

CHAPTER 2. CONCEPT OF NEURAL NETWORKS

of the neuron is described as z*. The following equation describes this process:

M
2 :O'(Z Wy - 2, + D) . (2.1)
m=1

It is good practice to split the dataset into a training, validation, and test dataset
before the training of a neuron. The weights and biases are adjusted using the
training dataset to minimize the difference between predicted and actual labels.
This optimization process is called training. Training is performed on every data
point in the dataset and repeated multiple times. One complete iteration over the
training dataset is called an epoch. The validation and test dataset are used for the
evaluation of the model performance at different steps. A more detailed description

of the training process and the different activation functions can be found in [Gér22].

2.2 Feedforward neural networks

A feedforward neural network, or FNN for short, is built by combining single neurons
side by side and in series. This network only passes values in one direction, called
forward, giving it the name forward neural network. It can be separated into layers,
with each layer receiving the output values of the previous layer as their input
values. A layer can contain one or more neurons that work side by side, they are not
connected to each other but to all the neurons of the previous layer. A layer of the
feedforward neural network is referred to as a dense layer. Figure 2.2 illustrates the
structure of a feedforward neural network. The first layer is called the input layer.
This layer is not made of neurons but symbolizes the input feature vector X'. The
last layer is called the output layer. All layers between the input and output layers
are named hidden layers. Commonly, the neurons used in the hidden layer have
the same activation function. The output layer usually has a different activation
function depending on the task of the network. Feedforward neural networks only
work on data that can be represented in a vector and higher dimensional data can
result in a high number of weights, which is not computationally efficient. For
example, a feature vector with 1024 features is connected to a dense layer with 1024
neurons. This already uses 1024 - 1024 ~ 1 x 10° weights and 1024 biases. Because

of this, other networks targeting different data types were developed.

20

CHAPTER 2. CONCEPT OF NEURAL NETWORKS

\
) Input layer
X, X y putiay

o=

Figure 2.2: The basic structure of a neural network [Gér22].

2.3 Convolutional neural networks

Another kind of neural network used in this work is the convolutional neural network,
or CNN for short. In contrast to the feedforward neural network, a convolutional
neural network works on grid-structured data and not just vectors. It is also more
efficient on high-dimensional datasets. Convolutional neural networks are usually
used for images, as they can capture two-dimensional related features. A particle
shower measurement of the EPICAL-2 can be described as a three-dimensional pic-
ture, introducing the use of convolutional neural networks to this work. However,
this is not computationally efficient. The analysis chapter describes this problem
in detail. In the following sections, the conceptual idea of a convolutional neural
network and the kind of data it works on its base unit, and the architecture of a

convolutional neural network are introduced.

The CNN is inspired by the visual cortex of a human. In the visual cortex, many
neurons have a small local receptive field, which means that the neurons are limited
to stimulation from a specific visual field region. In Figure 2.3 five neurons and their
local receptive field of a house are shown. By combining the information from the
features these five neurons have detected, such as lines and edges, more complex
features can be constructed. CNNs use this approach and combine features from
local receptive fields into more complex features. But instead of the local receptive
field being limited to one part of the visual field, it is limited to one specific feature
in the visual field. For example, the local receptive field of the CNN searches for the

location of a car in a picture (note that a car is already a complex feature and is

21

CHAPTER 2. CONCEPT OF NEURAL NETWORKS

Figure 2.3: Tlustration of a local receptive field and the combination of simple
features to complex features [Gér22].

not the first feature the network sees). The CNN uses the mathematical operation
of convolution to create a local receptive field, which gives the network its name
[Gér22].

CNNs are mainly used in computer vision, which is a field of machine learning
that is used for gird-like data from images and videos. It can only work on data
that can be represented in a tensor. This means only picturelike data, with a grid
symmetry, can be processed. Since CNNs are mostly used on pictures, the features

a data point is represented by are usually called pizels.

2.3.1 The filter kernel and convolutional layer

The base unit of a convolutional neural network is called the filter kernel and rep-
resents the adaptation of a local receptive field. The convolutional layer combines
multiple filter kernels into the core layer of the CNN. There are different kinds of
convolutional layers depending on the dimensionality of the data. This introduction
covers two-dimensional data that are represented in a matrix, such as pictures, but
convolutional layers for one-dimensional and three-dimensional data follow the same
principle. The two-dimensional convolutional layer is called Conv2D in the following

and also in the programming library used in this work [Ten23].

The filter kernel consists of a weight matric W which has the shape (f, X fu)
with fj, being the height and f,, the width of the filter kernel in pixels and a bias
b. For a filter kernel with a height of f, = 3 and width of f, = 3, W has a shape
of (3 x 3). Thus, this filter kernel consists of ten adaptable weights. The filter
kernel shown in Figure 2.4 has the same size and illustrates the calculation process.
The filter kernel is placed on a region of the input matriz X with the same size as

the filter kernel. Every pixel z; j ¢ X from the specific part of the input matrix

22

CHAPTER 2. CONCEPT OF NEURAL NETWORKS

is multiplied by its overlying weight and added up to form the activation a; ;. An
activation function o(a) is applied on the activation to calculate the output z; ;. The
output can be represented in an output matriz Z. Then the filter kernel is moved
to the next section of the input data. In Figure 2.4 this is visualized with the first
region colored in red and then the filter kernel is moved to the blue-colored region.
The next region of the input data is defined by the stride or step size. The stride
S = (Sh, Sw) defines how many pixels the filter kernel moves to the next part of the
input data. A visualization of stride is given in Figure 2.5, where a stride of (2, 2)
was defined. This means the filter kernel moves 2 pixels to the right to reach the
blue region. The same weights are used for every region of the input data, which
is referred to as weight sharing. This minimizes the number of weights and makes
the number of weights independent of the size of the input matrix. The calculation
described above can be expressed through the following equation, with z; ;; being a

pixel from the input data and z; ; being a pixel from the output of the filter kernel:

ol fe] i =i sy +u
Zij = U(ai,j) = O'(b + Z Z xi’,j’ . wu,v) with { y] (22)
u=0 v=0 J =] Swtv

The output matrix Z of a filter kernel is called feature map. Because the filter kernel
is seen as a local receptive field searching for a specific feature, the output data is
thought of as a map of the input data that is specifically weighted for this feature.

This means that the feature map also saves where this feature is detected.

The size of the output data is not necessarily the same as the input data. Usu-
ally, the size of the output data is reduced, but it depends on the size of the filter
kernel and the stride chosen. In Figure 2.4 a different stride is chosen as in Fig-
ure 2.5 resulting in a different size of the output in these figures. Other techniques
such as zero padding can be used to change the size of the output feature map. Zero

padding is not applied in this work, but an introduction can be found in [Gér22].

A convolutional layer combines multiple filter kernels side by side. The combi-
nation of multiple filter kernels allows the convolutional layer to search for multiple
features at once. Using multiple filter kernels side by side produces multiple fea-
ture maps. To handle multiple feature maps, a new third dimension is introduced,
stacking the feature maps on top of each other. For example, for n feature maps
of the size (dj, x d,,), the output of this layer has the shape (n x dj, x d,,). The
following convolutional layer uses this output as its input data. This implies that a
convolutional layer needs to handle input data that consists of stacked feature maps

or multiple picture representations. The extra dimension n is added to the filter

23

CHAPTER 2. CONCEPT OF NEURAL NETWORKS

v

R
" A

4 / 2 4 n ’

padding

Figure 2.4: Visualization of a (3 x 3) filter kernel and zero padding [Gér22].

-

+~ -

777 77

i £ /

Figure 2.5: The same visualization as used in Figure 2.4 for a (3 x 3) filter kernel,
now including a stride of s, = 2, s, = 2 [Gér22].

kernel as well, expanding its shape to (n x f, X f,,), which can now handle a stack
of feature maps as input data. This means the filter kernel goes through the whole
stack of feature maps or picture representations at every step. Figure 2.6 illustrates
the use of multiple convolution layers on an RGB (red, green, blue) representation of
a picture. By adding another dimension to the filter kernel, the amount of weights
increases with the factor n: [W’| = n-|W|. For a filter kernel with the shape (3 x 3)
and 4 feature maps, 3 -3 -4 4+ 1 = 37 weights are used. The weights are not shared
for different feature maps, as illustrated in Figure 2.6. The input data can also be
described as a stack of pictures, such as RGB pictures that have red, green, and
blue pixel representations, as shown in Figure 2.6. This means that the first layer
may already have to handle multiple feature maps. The initial Equation 2.2 can be
expanded to handle multiple feature maps, so the filter kernel k£ from a convolution

layer is represented by the following expression, with n being the number of feature

24

CHAPTER 2. CONCEPT OF NEURAL NETWORKS

Convolution layer 2

Feature o

i i

=" ;
Filters E ff\

)

Map1 ANt

A "'\ fr-a
I

A v Eisis
:

Convolution layer1

Input layer 1

Channels
Red

Figure 2.6: Visualization of two convolutional layers using an RGB picture as input
data [Gér22).

maps in the input data and x; j v a pixel from this stack of input data:

(2.3)

Zigh = 0O+ Y DD Ty W) With

u=0 v=0 k’=0

fh—lfw—l n—1 Z'/ :i'5h+u
j/:j'sw+v

2.3.2 Pooling

Only using convolutional layers in a network works well on small images, but for
bigger images, such as (256 x 256) pixel pictures, many layers, and higher strides
are needed to reduce the size of the output data. To solve this problem, pooling
operations are introduced. Pooling layers depict a modified version of the filter ker-
nel, that does not use any adaptable weights. They used aggregation functions to
reduce the dimensionality and information of the input data. The max, min, and
average functions are the most widely used aggregation functions. Two main types

of pooling layers, global and local pooling, are distinguished.

The local pooling operation, illustrated in Figure 2.7, is very similar to a filter
kernel. But instead of multiplying weights to the input pixels, an aggregation func-
tion is performed on the region of the pooling kernel. Also, pooling operations

are always performed separately for each feature map (pooling through all feature

25

CHAPTER 2. CONCEPT OF NEURAL NETWORKS

Max
. ”‘.".h"t_f
lof L 7 7 WV 7N
3 2 w7 7 7 [T
.""...F

Figure 2.7: Visualization of local mazx pooling [Gér22].

maps is called depthwise pooling, but is not needed in this work). Usually a stride
of the same size as the kernel size is used to achieve the most efficient dimension
reduction while using all the pixels. The most commonly used local pooling layer
called MazPooling2D in this work and the programming library applied in this work
[Ten23], uses a kernel size of (2 x 2), a stride of (2, 2), and the max aggregation func-
tion. Equation 2.3 can be modified to describe a pooling layer, using an aggregation

function @ for the feature map k of the n feature maps:

fo=1 fuw—1 o
) T =1-S,+ U
gk = ®(D Y wi i) with { L (2.4)
u=0 v=0 J =17 SwtU

The difference between global pooling and local pooling is that the pooling operation
is applied to the whole feature map at once. Therefore, global pooling is performed
on all pixels of the feature map and not just on one region. This reduces the whole
feature map to one value or a stack of feature maps into a vector. The output vector
7 = (20,21, , 2n) has the same length n as the number of input feature maps. The
global pooling operation for the feature map k£ can be summed up into an equation,
with d; and d,, being the height and width of the feature map.

dp—1dy—1

= @(Z Z Tupk) - (2.5)

u=0 v=0

26

CHAPTER 2. CONCEPT OF NEURAL NETWORKS

2.3.3 Convolutional neural network architecture

A convolutional neural network does not only use convolutional and pooling layers.
Convolutional layers and filter kernels operate based on the principle of identifying
simple features and combining them into complex features. This process can also
be described as feature extraction. However, a convolutional neural network should
not only extract features but find a mapping function to perform a specific task.
It was found, that using only convolutional and pooling layers is not able to suffi-
ciently find this mapping function. To resolve this issue, dense layers are used after
the convolutional layers to find a mapping function from the extracted features to
the specific task. With this, a convolutional neural network can be divided into
two parts. The first part uses convolutional and pooling layers to extract complex
features that are the best-dividing features for the dataset. The second part of the
network resembles a feedforward neural network, mapping the best-dividing features
to the specific task. For the transition between the parts, global pooling or flatten

layers are used. A flatten layer converts any tensor into a sequential vector.

2.4 Performance metrics

This section introduces performance metrics for classifications and regressions that
are used in the next chapter. Precision, recall and accuracy are performance metrics
used to evaluate classification models. The three metrics are introduced based on
a binary classification with the labels positive and negative but are not limited to
binary classifications Figure 2.8 illustrates the calculation of these metrics. The true
positive (tp) is the number of positive data points predicted as positive data points,
the same goes for the true negative (tn) with negative data points. False positive
(fp) is the number of negative values classified as positive data points, the other way
around is called false negative (fn). Accuracy is the relative number of data points
that are predicted correctly. Precision measures the percentage of the number of
data points that are predicted correctly into a specific class by the model to the total
number of data points classified as this class, increasing the precision minimizes the
number of false positive data points. Recall measures the relative number of data
points that are predicted correctly by the model to the total number of data points
in this class, this means it measures how many positive data points are found and
identified by the model. By increasing the recall, the number of false negative data
points decreases. These metrics are not independent of each other and, especially
precision and recall, should be considered together. For multiple classes, these met-

rics are usually calculated for every class [JM23].

27

CHAPTER 2. CONCEPT OF NEURAL NETWORKS

gold standard labels
gold positive gold negative
v system ‘e -, .
system pgsitive true positive | false positive | precision = it
output I 4
hele System . .
labels nggative false negative | true negative
! tp ! i tp+tn
recall = I raccuracy = ——
| tp+in | tp+p+tntfn

Figure 2.8: Confusion matrix for a binary classification system, with the golden
labels being the actual labels of the data points [JM23].

The metric or loss function mostly used for regression tasks is the mean-squared
error (MSE). The difference between a metric and a loss function is that loss func-
tions are used to optimize the neural networks and metrics are used to further
analyze the results and performance of the neural network. The MSE is the average
squared difference between the predicted output value § and the true label y with
the following equation:
| N

MSE(j) = & D> (i —4)* (2:6)
The MSE is not equal to the variance of the predicted values, as the true label is not
necessarily the same value as the mean of the predicted values. However, the MSE
can be written as the variance of the predicted values with an added bias term. A
more detailed explanation of this bias and its connection to the MSE can be found

in [Jam17].

28

Chapter 3
Analysis

This chapter presents a detailed description of the analysis methods used in this
work and their results. The two main goals of this analysis are the identification of
the type of primary particle and the prediction of the energy of the primary particle
for electron events using neural networks. To test the analysis methods, first, a
simplified particle identification called binary particle classification is studied. FNNs
and CNNs are used to explore all three tasks. However, the spatial hit distribution
of an event is too large to be efficiently used in a FNN or CNN. For example,
a three-dimensional CNN using the spatial hit distribution as a three-dimensional
image takes ~ 1 minute to classify or predict 10 events on the server architecture
used for this work. This means for a training dataset containing 100,000 data
points that one training epoch, one iteration of the training dataset, would take ~ 7
days. Usually, multiple epochs are required during training, making this approach
impossible. To reduce the size of the data from the spatial hit distribution, the
longitudinal hit distribution is introduced, which is a parameter extracted from the
spatial hit distribution. In the following, the longitudinal hit distribution is studied
for its usability for the three presented tasks.

3.1 Longitudinal hit distribution

In this section, the longitudinal hit distribution (LHD) is introduced, which is used
as an input parameter for the neural network models presented in the next section.
The LHD describes the number of hits per layer for all 24 layers of the EPICAL-2.
With that, the number of features of the data is reduced from 25 x 10° zeros or
ones to 24 values. In the following, the distinctiveness of the LHD originating from

different particle types and energies is studied.

29

CHAPTER 3. ANALYSIS

7001 MLHD at E_{prim}=20 GeV for
-4- pion
6001 electron
-4- kaon

o -4- muon
_5'500' -4- proton
@
o
» 400
£
G
5 300
Q
IS
=]
Z 2001

1001

R e SR SRBOES 8-
0 e==Q= :,—.—Q—-.—-.—-?—.—.—.—.—’—Q—-Q—-Q—-.—Q——Q— oy Y
0 5 10 15 20 25

Layer

Figure 3.1: Mean LHD of pions (blue), electrons (orange), muons (green), protons
(red), and kaons (purple) at E,.i, = 20 GeV.

First, the LHD is studied for a fixed energy of E,.;,;, = 20 GeV to examine the
LHD of different primary particles. Figure 3.1 displays the mean LHD of electrons,
pions, kaons, protons, and muons at an initial energy of F,;, = 20 GeV. The figure
shows three distinctive shapes of the LHD for the different primary particles. The
mean LHD of electrons displays a maximum in the lower layers and a decrease in
the number of hits per layer in the higher layers. In contrast to this, the mean LHD
of hadrons has no maximum but shows a steady increase in the number of hits per
layer. Muons are not expected to shower in an electromagnetic calorimeter, and
therefore the LHD of muons does not display any maximum or significant increase
in the number of hits per layer. In the following, the LHD of hadrons, muons, and
electrons are studied separately for all energies of the primary particle used in this

work.

The specific types of hadrons can not be distinguished well with their LHD and
therefore pions, kaons, and protons are referred to as hadrons in the following.
As hadrons can also develop electromagnetic cascades, it is useful to divide the
hadron events into showering hadrons (hadrons with shower, HwS) and not show-
ering hadrons (hadrons without shower, HwoS) as their LHD varies strongly. To
study this variation, Figure 3.2 shows the total number of hits per event to divide

the hadrons in these two classes. In the figure, the total hit distribution of all ener-

30

CHAPTER 3. ANALYSIS

14001 Distribution of total .number of hits for
—— pion
—— muon
12001
—— proton
i —— kaon
1000 E electron at 2GeV
P 150 hits hadron cut
42 800 1 I ---- 200 hits hadron cut
3 o
O 600 P
400- _—
H 1
g
200- .
: i
. 1
0_——J * : et
0 100 200 300 400 500

Total number of hits

Figure 3.2: Distribution of total hits per event for pions (green), muons (yellow),
protons (blue), kaons (red) with all energies and comparison to electrons (orange)
at Epim = 1 GeV. Multiple lines with the same colors are drawn for the different
energies between K., = 20 to 80 GeV for all hadrons and muons. The black
dashed and black dotted lines represent cuts made to define showering hadrons and
not showering hadrons. The figure is limited to 500, but higher numbers of total
hits than this limit exist.

gies of the primary particles that are studied in this work for hadrons and muons are
shown in the same color and the total hit distribution of electrons at E,,;, = 1 GeV
is displayed for comparison. The total hit distribution of hadrons has a maximum
between 50 and 100 hits, which does not show an energy dependence. Two cuts
at 150 and 200 total hits are studied, which divide the hadrons into not showering
hadrons with a lower number of total hits and showering hadrons with a higher
number of total hits than the chosen cut. The 150 total hits cut is introduced
since almost all total hits of electrons at E,.,, = 1 GeV, which are considered as
showers, have a number of total hits larger than the 150. On the other hand, the
200 total hits cut is chosen to include the majority of the total hit distribution of
hadrons as not showering hadrons, because it is generally not expected that hadrons
do shower or deposit their total in an electromagnetic calorimeter. With these two
cuts, the hadrons can be separated into the two classes of showering and not show-

ering hadrons.

31

CHAPTER 3. ANALYSIS

3001 MLHD HwS at E_{prim}= [I 61 MLHD HwoS at E_{prim}=
~$- 20GeV vt 1 r ! -4~ 20GeV
30 Gev y ‘ 30 Gev :
2501 -3- 40 Gev 5l -4- 40Gev |
5 -$- 60 GeV 5 | -4 60Gev
& | -4 80Gev { f %f‘}‘H } % & | -+ 80Gev §
~ 200 % 2 i
g * ¥ f £, i
2) { 2 . |
< < . =8 !
5150 Ficawesssecss + % H 3| R
3 A pt 23 F ,:
£ 100 110F E |7 .'
=3 / + =}]
2 1y . |
{- 14590{»{»}&&;&/) J
50 } s ad ¥
%E
sl
0 1
0 5 10 15 20 25 0 5 10 15 20 25
Layer Layer

Figure 3.3: Mean LHD of showering hadrons (left) and not showering hadrons (right)
with a 200 total hits cut averaged over all hadron types.

The mean LHD of hadrons after employing a total number of hits cut has dif-
ferent shapes for showering and not showering hadrons. Figure 3.3 shows the LHD
of showering (left) and not showering hadrons (right) using the 200 total hits cut.
The comparable figure using the 150 total hits cut can be found in Appendix B.2.
The showering hadrons (right) show an increase in the number of hits per layer as
a function of the layers, also a maximum is seen in the range of layers 15 to 21.
A strong energy dependence is observed as well. The not showering hadrons (left)
display only a small increase in the number of hits per layer as a function of the
layers, and no energy dependence is found. The figure only illustrates the mean
LHD averaged of all types of hadrons. The mean LHD for pions, kaons and pro-
tons can be found in Appendix B.1 using the 200 total hits cut and in Appendix
B.3 using the 150 total hits cut as a small difference in the magnitude of the mean
LHD of showering hadrons of the different hadron types for the same energy of the
primary particle is seen. Nevertheless, the showering hadrons class is not divided
into its specific hadron type. The mean LHD of showering hadrons shows an energy
dependence, which makes the prediction of the energy of the primary particle on
the LHD possible. However, as the hadrons do not deposit all their energy in the
EPICAL-2, the usefulness and validation of this prediction are questionable.

Figure 3.4 (left) shows the mean LHD of muons, which has a similar shape as the
mean LHD of the not showering hadrons. The muon LHD displays only a small en-
ergy dependence, with a maximal difference of ~ 1.5 hits per layer between 20 and 80
GeV. Comparing this to the energy dependence of the showering hadrons, the energy

dependence of the muons is negligible. As the muons and not showering hadrons

32

CHAPTER 3. ANALYSIS

61 MLHD muons at E_{prim}= MLHD electrons at E_{prim}=
-4- 20 GeV 20001 -4 ; gez [
e
30 GeV e
-3- 1750 & 3GeV |

5] -#4- 40 GeV + -4 4Gev ¢
9] -4- 60 GeV i 5 4 5Gev %
215 socey it ¥ H,AH 315001 -+ 20Gev |
o {}% 34 4t ol 30 Gev %
34 :,4/;'++ i-E 8 15501 -+ 40Gev
2 i%’t & 3+ -4 f ?{ 8 gg gex ' L
< . : ¥ e - e
e }fi& 5 1000 I 14 b !
837 7 £ ! { }
€ if £ 750 7§ By
é : 2 1 + v

.4 +4 ¢
5 500 i ‘/*,&r iy N N
o § j‘i gl
250 1% 3 NN
T ix\i\‘vz&
1 0 iiﬁ#—i’:"**o—‘!fl—**ii saast Al
0 5 10 15 20 25 0 5 10 15 20 25

Layer Layer

Figure 3.4: Mean LHD of muons (left) and electrons (right) of different energies.
have a similar shape, they are treated as one class in the particle identification task.

Figure 3.4 (right) shows the mean LHD of electrons. It displays a strong energy
dependence, which allows the electron energy prediction task to work on the LHD.
The mean LHD of electrons of all energies has a maximum in the lower layers and a
decrease in the number of hits per layer in the higher layers. The maximum of the
mean LHD moves to higher layers and higher magnitude or total hits with increasing
energy. Figure 3.5 illustrates this with the relative distribution of the maximum of
the LHD of electrons for the different energies of the primary particle. The figure
also shows that the maximum is not equal in all events of one energy but follows the
distribution in the figure. Therefore, it is expected that the LHD of an individual
electron event does not necessarily have the same maximum position as the mean
LHD of electrons.

In conclusion, the LHD is a useful parameter for neural networks to predict the par-
ticle type, or rather decide between electrons, showering hadrons, and non-showering
hadrons/muons. Also, the prediction of the electron energy is possible through the
strong energy dependence of the LHD. Another parameter that can be of interest
for future studies is the lateral shower profile, as it is expected to differ for hadronic

and electromagnetic showers.

33

CHAPTER 3. ANALYSIS

30
Distribution of layer with maximum
hits for electrons at E_{prim} =
25 -o- 1 GeV
X o A 2 GeV
< batd -e- 3 GeV
0 I3
€ 20 ’: g’ =\ -e- 4 GeV
3 G AN e 5GeV
- i | ‘)l\,\' ‘\| -e- 20 GeV
Tt
5 151 FHEO SN 30 GeV
1 Lty
2 $ /00 Qs | o~ 40 GeV
I ,I 1 . Y
2 DTN e 60 GeV
’l r" 1' $ \‘\® \ ®
_g 10+ i ,,',- '¢ 3 \‘\ \‘ o 80 GeV
-'f_UJ ‘, l"‘ I’ \\\ *‘ ‘\
T " 1! 1
g ‘ ,”l"d) ’,‘ ‘\\ \:\\\O *\\ ®
51 e L RN
’l II‘, ', N \\\ b
’:' ,'ﬁ 6 P .\i\ \Re
Y /7 b 3
0 -’iﬁ‘li 7’ 4 « | f) . .
0 5 10 15 20 25

Layer with maximum hits

Figure 3.5: Probability distribution of the maximum layer of the LHD for electrons.

3.2 Binary particle classification

First, the simple binary particle classification is studied. The goal is to classify the
primary particle of an event either as a pion or an electron with an initial energy
of Epim = 20 GeV. By reducing the types of primary particles and energies of the
primary particle, the LHD as a parameter for the neural networks and the neural

network architectures can be tested in a more explainable environment than in the

full particle identification.

The dataset for this task consists of 40,000 events, with 20,000 events for pions
and electrons each. It is split into the training dataset containing 24,000 events,
the validation dataset with 8,000 events, and the test dataset holding 8,000 events.
The datasets contain an equal amount of events from both classes. The LHD is

extracted for all events and used as input for the neural network, the mean longitu-

dinal distribution of the two classes is shown in Figure 3.1.

Three neural networks are compared for the binary particle classification: two FNNs
and one CNN. As the layer with the maximum of the LHD varies over individual
events for the LHD of electrons and showering hadrons, as seen in Figure 3.5 for the

electrons, a pure FNN approach that is directly connected to the LHD of every layer

34

CHAPTER 3. ANALYSIS

may not be the most efficient. For this reason, a CNN is chosen as a comparison as
it does not directly connect to the LHD of every layer, but searches for features in
the LHD. One network uses a CNN before the FNN, and two FNNs are trained to
study this hypothesis. The network using a CNN is named CNNI, and the model
only using a FNN with the same number of parameters, meaning weights and bi-
ases, as CNN1 is named FNNI. The third model is a FNN named FNN2 with fewer
parameters than the other models to study if a smaller number of parameters is suf-
ficient to solve the binary particle classification task. To transition from the CNN
to the FNN in the CNN1, a one-dimensional global average pooling layer is applied.
The input layer of all networks uses the 24 values of the LHD, and the output layer
uses two neurons with a softmax function, representing the electron and pion. All
other hidden layers use the GELU activation function. The model is compiled with
the NAdam optimizer, sparse categorical cross-entropy as a loss function, and early
stopping. The metrics calculated are the accuracy, precision, and recall. A detailed
description of these functions can be found in the program libraries documentation,
such as [Ten23]. The full network architecture can be found in Appendix C.1. No
optimization was performed on the model architecture, but could be considered for

further studies and optimization.

All models show an overall good performance on the binary particle classification
task and have similar performance metric values. The evaluated metrics of precision,
and recall introduced in Section 2.4 for the predictions of the test dataset are listed in
Table 3.1. The class accuracy is calculated differently than the introduced accuracy
by dividing the number of correctly classified events by the total number of events
from this class. The CNN1 shows the best electron accuracy and the FNN1 has the
best pion accuracy, but all networks only have small differences in these metrics.
To further study the precision and recall the absolute values of true positive, false
positive, etc. are illustrated in the confusion matrix for every model in Figure 3.6.
The confusion matrix of CNN1 shows that two electrons were wrongly classified as
pions and 22 pions were identified as electrons. The other two models both have 4
misclassified electrons and a lower number of falsely identified pions than the CNNT1.
Figure 3.7 illustrates the LHD of the misidentified events of the CNN1 in comparison
to the mean LHD of electrons, and pions. Similar figures for the FNN1 and FNN2
can be found in Appendix C.3. The wrongly classified pions show a significantly
different LHD than the mean pion distribution and rather follow the mean distri-
bution of electrons. This indicates that the wrongly classified pion events shower in
the EPICAL-2, which further motivates the division of hadrons into showering and

not showering events to improve the model performance on the LHD. In contrast

35

CHAPTER 3. ANALYSIS

metrics in % | CNN1 | FNN1 | FNN2
el accuracy 99.95 | 99.90 | 99.90
el precision 99.45 | 99.60 | 99.48
el recall 99.95 | 99.90 | 99.90
pi accuracy 99.45 | 99.60 | 99.48
pi precision | 99.95 | 99.90 | 99.90
pi recall 99.45 | 99.60 | 99.48

Table 3.1: Comparison of test performance metrics in the binary particle classifica-
tion task.

to the FNN models, the CNN1 was able to correctly classify electron events that
shower in higher layers and that were wrongly identified by the FNN1 and FNN2,
shown in Appendix C.3. Even with the wrongly classified electron event that starts

showering in the layer 13, the CNN1 is more robust against varying shower starts
than the FNN models.

The good performance of the models shows that the LHD is sufficient as an in-
put parameter for the studied models for the binary particle classification task.
Compared to the FNN models, the CNN1 is more robust to varying shower starts of
the LHD of electrons. For future studies, the lateral hit distribution can be added to
the LHD as an input parameter and an optimization of the network architecture can
be performed to further increase the performance of the models. As these models
show good performance on this simple task, they present a starting point for particle

identification and electron energy regression.

36

CHAPTER 3. ANALYSIS

Confusion matrix BinaryClasi CNN1
pion electron

) 3978
pion | p: 99 95%, R: 99.45% 2

Predicted labels

3998
electron 22 P: 99.45%, R: 99.95%

Actual labels

Confusion matrix BinaryClasi FNN1 Confusion matrix BinaryClasi FNN2
pion electron pion electron
. 3984 . 3979
pion 1 p: 99.90%, R: 99.60% & pion 1 p: 99.90%, R: 99.48% &
v v
[[
Q Q
© ©
ke ke
Q Q
s s
<] <]
ke ke
o o
a a
3996 3996
electron 16 P: 99.60%, R: 99.90% electron 21 P: 99.48%, R: 99.90%
Actual labels Actual labels

Figure 3.6: Confusion matrix with precision and recall of the CNN1 (top), FNN1
(bottom left) and FNN2 (bottom right) model.

3.3 Particle identification

As the simple binary particle classification task showed a good performance, the task
can be broadened to include more primary particle types and energies. In this task,
the type of the primary shower particle should be identified from the full provided
dataset introduced in Section 1.2. The main target is to classify electron events
correctly, to later derive their energy from the shower shape. This is not possible

for hadrons and muons, as not all their energy is deposited in the EPICAL-2.

It is useful to divide the dataset into three classes for the particle identification:
electrons, hadrons with shower, and hadrons without shower or muons. This sep-
aration is done to get better-dividing shapes of the LHD, which is studied in the
previous Section 3.1. As it is also the main target to identify electrons, an extensive
distinction between the different hadrons is not necessary. Here, models using the
150 and 200 total hits hadron cut are compared. The dataset includes 1,646,413
events, that are unequally distributed over the pions, kaons, protons, electrons,

muons, and their energies. The exact number of events per type of primary particle

37

CHAPTER 3. ANALYSIS

LHD of wrongly classified data CNN1
electron classified as pion
800 pion classified as electron
--- mean electron
-e-- mean pion
o
>
® 600 AR
@ .
a
e .
._E \\ \
"'6 \ ‘ \ \
5 400 LA
2 AR)
S \
é’ T WA A
W 0\] '\W‘, \ /
200 N\ *‘{‘W\
- ,41 \‘. \ AN\ Y \
‘\ .y)
QAN
N kg‘,,
LK —0-0/0-0-0-9-‘0 -0 TA’%
0+ i . . : -
0 5 10 15 20 25

Layer

Figure 3.7: LHD of wrongly classified events by the CNN1 and for comparison the
mean LHD for electrons and pions at E,., = 20 GeV.

and energy of the primary particle can be found in Appendix A. The number of
events per type of hadron and its energy also depends on the cut that divides the
hadron events into showering hadrons and not showering hadrons. For example, the
200 hits hadron cut creates 640,000 events of electrons, 368, 083 events of showering
hadrons, and 638, 330 events of non-showering hadrons and muons. To counteract
this unequal distribution, class balance weights are given to each of the three classes
and the different energies. For ¢ being a combination of one of the three classes
and one energy, the class balance weights for all events in ¢ are calculated with the

following formula:
025 Nyg

W; = N
)

with /V; being the number of events in ¢ and Ny, the total number of events. 0.25- Ny

(3.1)

was chosen as a normalization to get class balance weights of a similar magnitude
and greater than 0.25 and to shift the range of the class balance weights to smaller
values. These class balance weights are used during the training of the model to

weigh the training loss and ensure all classes and energies are learned equally well.

38

CHAPTER 3. ANALYSIS

Eight different models are trained for the 150 and 200 total hits cut for hadrons,
either following the FNN1 or CNN1 structure and for each a model using the class
balance weights and one without class balance weights. All models use the LHD as
input and thus have a 24 neuron input layer. They use GELU as activation function,
and they have a three-neuron output layer using the softmax activation function.
The CNN models have a significantly higher number of parameters than the FNN

models. The full model architecture is given in Appendix D.1.

All models show a similar performance on the task. In Figure 3.8 the categori-
cal cross-entropy of the test dataset is plotted for the eight models and each class
separately. For the electrons, a trend can be seen that the models with class balance
weights have a lower test loss than the models without class balance weights, and
the models using the 200 total hits cut outperform models with the 150 total hits
cut. In the test loss of the non-showering hadrons and muons, the models using the
200 total hits cut also perform better. However, models with class balance weights
show a different trend, the models using the class balance weights have a higher test
loss than the models without class balance weights. No significant trend is found
for the showering hadrons. In Table 3.2 more test metrics are compared. No model
outperforms the other models in all metrics. However, the CNN models show a
better performance for the electron class, and the models using the 200 total hits
cut tend to have better accuracies than the models using the 150 total hits cut.
The CNN4 has the highest total accuracy of 97.96%, nevertheless, all models have
a total accuracy between 97% and 98%. The confusion matrix for every model can

be found in Appendix D.2.

In general, the performance of all models is similar. Models using the 200 total
hits cut and class balance weights mostly have higher performance metrics than
models without. Nevertheless, a general trend could not be observed. To further
improve this task the model architecture, the hadron cut, and the class balance

weights could be optimized.

39

CHAPTER 3. ANALYSIS

metrics in % CNN2 | CNN3 | CNN4 | CNN5 | FNN3 | FNN4 | FNN5 | FNN6
total hits cut 150 150 200 200 150 150 200 200
class bal. weights yes no yes no yes no yes no
accuracy 97.38 | 97.42 | 97.96 | 97.88 | 97.29 | 97.35 | 97.87 | 97.83
El accuracy 96.29 | 96.22 | 96.58 | 96.33 | 95.92 | 96.04 | 96.12 | 96.15
El precision 97.46 | 97.81 | 97.32 | 97.38 | 97.73 | 97.69 | 97.69 | 97.53
El recall 98.77 | 98.34 | 99.22 | 98.89 | 98.11 | 98.27 | 98.36 | 98.55
HwS accuracy 89.31 | 89.52 | 91.14 | 90.75 | 89.06 | 89.27 | 90.94 | 90.65
HwS precision 94.04 | 93.71 | 95.89 | 96.12 | 93.30 | 93.42 | 95.13 | 95.60
HwS recall 94.68 | 95.25 | 94.85 | 94.21 | 95.14 | 95.27 | 95.37 | 94.59
HwoS accuracy 97.00 | 97.16 | 98.23 | 98.30 | 97.14 | 97.14 | 98.41 | 98.34
HwoS precision 99.38 | 99.35 | 99.78 | 99.36 | 99.35 | 99.45 | 99.62 | 99.39
HwoS recall 97.59 | 97.79 | 98.44 | 98.93 | 97.76 | 97.66 | 98.78 | 98.94

Table 3.2: Comparison of test metrics for electrons (El), hadrons with shower (HwS),
and hadrons without shower/muons (HwoS). The best (darker) and second-best
(lighter) models of a metric are highlighted.

3.4 Electron energy regression

The previously discussed models can only predict the type of primary particle initi-
ating the particle shower. However, also the energy of the primary particle can be
determined from the spatial hit distribution. The classical approach of calculating
the energy of the primary particle is introduced in Section 1.2. This section explores
the machine learning approaches for the prediction of the energy of electron events.
The energy prediction can only be performed for electrons, as they are the only par-
ticles included in this works’ dataset that deposit all their energy in the EPICAL-2.

The dataset for this task consists of electron events with different discrete ener-
gies from E,,;,, = 1 to 80 GeV. As the dataset only includes discrete energy values,
the particle identification task could be interpreted as a classification, where an
electron event is classified as one of the given energies. However, real measurements
usually include continuous energy values instead of discrete energy classes. There-
fore, a regression task is more useful for further applications that do not use discrete
energy values. However, using discrete energy classes as training data for a regres-
sion task can result in unique problems, which are not found in a regression task
trained with continuous values or in a classification task with class values. This will
be discussed later in this section in more detail. The number of events per energy
class is unequally distributed in the dataset for the particle identification class. For
this, the class balance weights of Equation 3.1 are used again. A modified version

of the FNN and CNN used in the previous task are implemented here. They have a

40

CHAPTER 3. ANALYSIS

8 Test loss of
the models:
0.141 > CNN2
2 CNN3
©0.121 CNN4
= CNN5
3 . FNN3
(V)] 4
o 0.10 FNN4
o FNNS5
5 0.081 FNN6
I
(@)
2 0.061
(]
@] -
0.041 , =
021 . -
Electrons HwS HwoS and muons

Figure 3.8: Comparison of the test loss of all models for the electrons, showering
hadrons (HwS) and not showering hadrons/muons (HwoS and muons) class.

similar architecture as Appendix D.1, but their output layer consists of one neuron

using the ReLLU activation function. All models use the LHD of an event as input.

In the following, five metrics are studied to evaluate the model’s performance on
the test dataset. Figure 3.9 shows the mean squared error (MSE) calculated for
each energy separately. The higher energies have a larger MSE than the lower en-
ergies. This is expected since the distances between the training energy classes
are smaller at low energies. The model using the CNN with energy balance weights
seems to perform better than the other models, which perform similarly. Figure 3.10
shows the difference between the predicted and true energy values. Also in this met-
ric, the model using the CNN with energy balance weights has a smaller difference
between predicted and true energies as compared to the other models. Another
prominent feature illustrated in Figure 3.10 is the anti-symmetry of positive and
negative differences. The model using the CNN with energy balance weights shows
more frequent and larger positive than negative difference values, e.g. —2.5 GeV
has ~ 10 counts compared to 2.5 GeV with ~ 50 counts. However, the other three
models show a different trend with slightly more frequent and larger negative than
positive values, e.g. —5 GeV has ~ 20 counts compared to 5 GeV with ~ 10 counts.

To further investigate the antisymmetric behavior, Figure E.2 illustrates the distri-

41

CHAPTER 3. ANALYSIS

10
Test loss of s
~ the models:
% 81 e CNN with e.b.w.
O CNN without e.b.w.
£ e FNN with e.b.w.
§ 61 @ FNN without e.b.w.
o (]
°
o
s 47
S
g []
5 2 ° .
(0]
= °
°
0 ® ° PY ° ® Y [] []
1 2 3 4 5 20 30 40 60 80

Figure 3.9: Comparison of the test loss (mean squared error) for all energies consid-
ered in this work and all models, either using the energy balance weights (e.b.w.)
or not.

bution of the predicted energies for each energy class separately for the model using
the FNN without energy balance weights. The comparable figures for the other
models can be found in Appendix E. The distributions of the predicted energies
of the higher energies E,.;, = 20,30,40,60,80 GeV in Figure E.2 mostly follow a
Gaussian trend. However, the distributions of the predicted energies of the lower
energies Ep.im, = 1,2, 3,4,5 GeV display unique shapes that differ from the expected
Gaussian distribution. In all models, no predicted energy values below 1 GeV are
observed, making 1 GeV the minimum of the range of the output values of all mod-
els. A possible explanation for this is the fact that no energies below this minimum
are used during training. In contrast to this, no maximum energy is observed at
Eyrim = 80 GeV, which is the highest energy class included in the training dataset.
Further research is needed to understand the cause of this seemingly contradicting
behavior. The distributions of the predicted energies of E,.i, = 2,3,4,5 GeV could
be explained by the different step sizes between the energy classes. For example,
as b GeV is closer to 4 GeV than 20 GeV predictions tend to be more under than
above E,.i, = 5 GeV because this region is more explored than the region between
5 and 20 GeV. The distributions of the predicted energies of higher E,;,, of other
models can be found in Appendix E, which show antisymmetric differences from the
expected Gaussian distribution could also be explained by the different step sizes.

In further studies, models using the same energy class step size could be used to

42

CHAPTER 3. ANALYSIS

106
Distribution of the difference
5 between predicted and true energies:
1077y CNN with e.b.w. i
CNN without e.b.w.
1044 — FNN with e.b.w.
—— FNN without e.b.w.
ha)
S 103
(@]
o

101_

100+ — ' ' . ' ' .
-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0
Difference of the predicted and true energy in GeV

Figure 3.10: Comparison of the difference between the predicted and true (pred —
true) energy for all models, either using the energy balance weights (e.b.w.) or not,
including all energies considered in this thesis.

investigate the hypothesis of the importance of equal step sizes or a dataset con-
taining continuous energy values could be used in training to study the impact of

the discrete energies on the regression task.

Even though the distributions of the predicted energies are not all Gaussian, the
mean and standard deviation of the distributions of the predicted energies are used
to calculate the energy resolution and linearity introduced in Section 2.4. The lin-
earity and energy resolution of the classical approach using the total number of hits
to estimate the energy of the primary particle is shown in Figure 1.7. The energy
resolution and linearity of the models can not be considered fully comparable to
the energy resolution and linearity of the classical approach, because not all distri-
butions of the predicted energies are Gaussian distributed. Figure 3.12 shows the
linearity of the mean predicted energy of the models and the true energy (left). The
mean energy prediction is fitted with the linear function y = m-x to the true energy
for every model separately. A perfect model would deliver a gradient of m = 1. All
models besides the model using the CNN with energy balance weights have a gra-
dient lower than 1. This is consistent with the antisymmetric distributions shown
in Figure 3.10. The relative difference between the mean of the predicted energies
and the linear fit illustrated in Figure 3.12 (right) has larger differences for lower

energies. This is caused by the antisymmetric and non-Gaussian distributions of

43

CHAPTER 3. ANALYSIS

Eprim =1 GeV 104 Epim =2 GeV. Eprim =3 GeV.

10°

103

Counts
=
v
Counts

10t

1000 == 10° I
0 1 2 3 0 1 2 3 4 1
Predicted energy in GeV Predicted energy in GeV

-1 2 4 5
Predicted energy in GeV

Eprim =4 GeV Eprim =5 GeV Eprim = 20 GeV/

Counts

15 20 25

2 3 4 5 6 4 5 6
Predicted energy in GeV

Predicted energy in GeV Predicted energy in GeV

Eprim = 30 GeV/ Eprim = 40 GeV

35 40 45

25 30 35
Predicted energy in GeV Predicted energy in GeV

Eprim = 60 GeV Eprim = 80 GeV.

55 60 65 70 75 80 85
Predicted energy in GeV Predicted energy in GeV

Figure 3.11: Distributions of the predicted energies of the energies E,,.;,, =1, 2, 3,
4, 5, 20, 30, 40, 60, and 80 GeV for the model using FNN without weights. The
x-axis shows the predicted energy and the y-axis is the counted amount.

the predicted energies of the lower E,,;,,, which make it impossible that the mean
is equal to the true energy. In comparison to the ratio of the linearity of the total

number of hits in Figure 1.7, the mean predicted ratios of the models perform worse.

Figure 3.13 shows the models energy resolution. The energy resolution describes
the spread and accuracy of the energy prediction of the models. The energy resolu-
tion of every model shows better or similar performance than the energy resolution
using the classical approach, but this should be considered with care as not all model
energy prediction distributions follow a Gaussian distribution, as opposed to the dis-
tributions used to calculate the energy resolution of the classical approach. However,

as the higher energy values mostly show a Gaussian distribution, the model resolu-

44

CHAPTER 3. ANALYSIS

4
1 === m=[1.011] - R . . L
80 m=[0.999] /,"{' Linearity ratio of model predictions:
704 m=[0.994] J 31 & o CNN with e.b.w.
> m=(0.993] 2 © % CNN without e.b.w.
& 60{ ® CNN_with_weights & T 2] 0 ° o FNN with e.b.w.
i CNN_without_weights s = ° o FNN without e.b.w.
2501 o FNN_with weights oy & 1)
S © FNN_without_weights 2 £ls ° e °
40 Paa I [S ° °
2 <& 0 &
& . £R ° 8
5 ’ g5
0 30+ e <
s , “é § -1 °
§ 20 yas HE °
s s g -2
10 4 Jtd e
i _3 Y
ol # 3
- - - - - - - - - -4
0 10 20 30 40 50 60 70 80 0 20 40 60 30
True energy in GeV E in GeV
prim

Figure 3.12: Model linearity of the mean energy predictions and the true energy
with linear fits y = m - x and their gradient (left), the ratio of the relative difference
of the mean energy prediction and the value of the linear fit (right).

Model resolution

0} ® CNN with energy weights
12 -.. CNN without energy weights
® FNN with energy weights
-2 ® FNN without energy weights
10 1€
X
o .
c °1®
- []
3
~ 6
o) 0
0
4] [] 0
0 “
() (]
2 (1]
[]
0 10 20 30 40 50 60 70 80

Energy in GeV

Figure 3.13: Energy resolution of all models.

tion is comparable for these energies. For the higher energies, the models show equal
values of the energy resolution to the energy resolution of the classical approach.
Only the model using the CNN with energy balance weights has lower values of
the energy resolution than the classical approach. However, the validity of this re-
sult requires further studies because the distributions of the predicted energies of
the higher E,,;,, for this model are generally not Gaussian distributions. A better
model energy resolution implies that the models can reduce the error that is found
for the estimation of the energy of the primary particle that only uses the total num-
ber of hits. Also instead of the \/LE dependence found in the detector hits energy
resolution, the model resolution is expected to follow a % distribution, as the mean
1

energy prediction should be p ~ F resulting in /% ~ o

45

CHAPTER 3. ANALYSIS

In conclusion, it is found that the energy prediction of electron events with neu-
ral networks is possible, and its energy resolution is equal to or better than the
energy resolution of the classical approach based on the total number of hits. How-
ever, the usage of energy classes with unequal step sizes for the regression task may
induce the non-Gaussian distributions of the energy prediction seen in this work.
Because of this, the energy resolution of the models and the classical approach are
not comparable for all energies and all models. In further studies, this issue can be
studied, by using equal steps for energy classes, e.g. only E,.;,, = 20, 40, 60, and

80 GeV, or with a new dataset using continuous energy values.

46

Chapter 4
Summary and outlook

In this thesis, particle identification and the prediction of the energy of electron
events with neural networks based on the simulated EPICAL-2 detector response
are explored. The detector response of the EPICAL-2 to a particle shower can be
represented as a three-dimensional spatial hit distribution. However, this spatial hit
distribution is a large data format as it encompasses the information of ~ 25 x 108
pixels. To efficiently explore the use of neural networks, the longitudinal hit distri-
bution is extracted from the spatial hit distribution to use as input to the neural
networks. The longitudinal hit distribution is observed to divide three classes for the
particle identification and separate the different energies of the electron events well.

This makes the longitudinal hit distribution a good parameter for the explored tasks.

The particle identification is done on the basis of the longitudinal hit distribu-
tion dividing the three classes: electrons, showering hadrons, and not showering
hadrons/muons. Different feedforward and convolutional neural networks are stud-
ied and compared for this task. The best model has a 97.96% accuracy, which

describes the relative number of correctly classified events.

The electron energy regression is also based on the longitudinal hit distribution
and uses different feedforward and convolutional neural networks to predict the en-
ergy of an electron event. The distributions of the predicted electron energy of the
models show unexpected non-Gaussian distributions for some energies. This could
be caused by the training dataset, which contains events from discrete energy values
with varying step sizes. Also using discrete energy values for a regression task that
predicts continuous values could play a role. The distributions of the predicted elec-
tron energy that show a Gaussian distribution perform equally well as the classical
energy estimator using the total number of hits to predict the energy of electron

events. Further research is needed to understand the cause of the distributions of

47

CHAPTER 4. SUMMARY AND OUTLOOK

the predicted energies.

In this thesis, all models use the longitudinal hit distribution as input. However,
there are other parameters that can hold additional information about the particle
shower that could be included in the input of the models to increase their per-
formance. An additional parameter could be the lateral hit distribution or lateral

shower profile of every layer, studied in [Alm+23].

In this analysis, only feedforward and convolutional neural networks are used. How-
ever, there are more types of neural networks that can be explored. In further
research, emphasis should be placed on neural networks based on graphs. The spa-
tial hit distribution measured by the EPICAL-2 can be represented as a graph, which
greatly reduces the size of the data format. The graph representation of the spatial
hit distribution has an expected size between 3 x 10? to 3 x 10* hit features depending
on the event, in contrast to the 25 x 10° pixel features of the spatial hit distribution
for every event. Neural networks working on graphs for the explored tasks are graph
neural networks and graph transformers. In detail, the dynamic graph convolutional
neural networks (DGCNN) [Wan+19], the GarNet, and the GravNet [Qas+19] are
candidates for the graph data of EPICAL-2.

Exploring graph neural networks and graph transformers opens up other possible
tasks. In this work, it is assumed that all events contain only one primary particle,
but this is not always the case. Graph-based neural networks should be able to
handle tasks with multiple primary particles, such as energy prediction of each of
the multiple primary particles. Another potential task is the simulation of parti-
cle showers with neural networks. Possible candidates for generative models that
are able to simulate the spatial hit distributions of particle showers are generative
adversarial networks (GAN) [Goo+14] in combination with graph transformers or
the graph neural network, introduced above. More possible candidates of generative
models can be found in [HEP], which are explored for other tasks and detectors but
could potentially be applied to the EPICAL-2 as well.

48

Acknowledgements

I would like to express my deepest gratitude to Prof. Dr. Henner Biisching for giving
me the opportunity to write this thesis and for his kind guidance during my academic
journey. I am furthermore very grateful to Prof. Dr. Harald Appelshauser for
agreeing to examine this thesis. I want to express my gratitude to Mario Kriiger and
Tim Rogoschinski for guiding me in writing my thesis and developing the analysis.
Furthermore, I would like to thank the EPICAL-2 group and especially Thomas
Peitzmann and Nigel Watson for their advice and expertise. I want to express my
gratitude to the Frankfurt working group for welcoming me, and for their advice
and expertise. Finally, I want to thank my family and friends for their support

throughout my studies.

49

Bibliography

[Alm-+23]

[Col23]

[Frall]

[Gér22]

[Goo+14]

[HEP]

[Jam17]

[IM23)]

[KW20]

[Qas+19]

J. Alme et al. “Performance of the electromagnetic pixel calorimeter
prototype Epical-2”. In: Journal of Instrumentation 18.01 (Jan. 2023),
P01038. po1: 10.1088/1748-0221/18/01/p01038. URL: https://doi.
org/10.1088%2F1748-0221%2F18%2F01%2Fp01038.

ALICE Collaboration. ALICE: FOCAL. 2023. URL: https://alice-
collaboration.web.cern.ch/menu_proj_items/FOCAL. (accessed:
07.09.2023).

Gian Franco Dalla Betta. Advances in Photodiodes. IntechOpen, 2011.

Aurélien Géron. Hands-on Machine Learning with Scikit-Learn, Keras,
and Tensor Flow. 3rd ed. O'Reilly Media, Inc., 2022.

Tan J. Goodfellow et al. Generative Adversarial Networks. 2014. arXiv:
1406.2661 [stat.ML].

HEP ML Community. A Living Review of Machine Learning for Parti-
cle Physics. URL: https://iml-wg.github.io/HEPML-LivingReview/.
(accessed: 22.09.2023).

Gareth James. An Introduction to Statistical Learning with Applications
in R. 8th ed. Springer, 2017.

Dan Jurafsky and James H. Martin. Speech and Language Processing.
3rd ed. unpublished draft, Aug. 2023. URL: https://web.stanford.
edu/~jurafsky/slp3/.

Hermann Kolanski and Norbert Wermes. Particle Detectors. Oxford

university press, 2020.

Shah Rukh Qasim et al. “Learning representations of irregular particle-
detector geometry with distance-weighted graph networks”. In: The Eu-
ropean Physical Journal C 79.7 (July 2019). por: 10 . 1140/ epjc/
$10052-019-7113-9. URL: https://doi.org/10.1140%2Fepjc’
2Fs10052-019-7113-9.

Tim Rogoschinski. personal communication.

20

https://doi.org/10.1088/1748-0221/18/01/p01038
https://doi.org/10.1088%2F1748-0221%2F18%2F01%2Fp01038
https://doi.org/10.1088%2F1748-0221%2F18%2F01%2Fp01038
https://alice-collaboration.web.cern.ch/menu_proj_items/FOCAL
https://alice-collaboration.web.cern.ch/menu_proj_items/FOCAL
https://arxiv.org/abs/1406.2661
https://iml-wg.github.io/HEPML-LivingReview/
https://web.stanford.edu/~jurafsky/slp3/
https://web.stanford.edu/~jurafsky/slp3/
https://doi.org/10.1140/epjc/s10052-019-7113-9
https://doi.org/10.1140/epjc/s10052-019-7113-9
https://doi.org/10.1140%2Fepjc%2Fs10052-019-7113-9
https://doi.org/10.1140%2Fepjc%2Fs10052-019-7113-9

BIBLIOGRAPHY

[Sch] Jan Schongarth. personal communication.

[Sch22] Jan Schongarth. “Simulation der Detektorantwort von MAPS auf einzelne
Schauerteilchen”. Bachelor Thesis. Goethe Universitat Frankfurt, 2022.

[Ten23| Tensorflow. Keras Documentation. 2023. URL: https://keras . io/.
(accessed: 31.07.2023).

[Wan+19] Yue Wang et al. Dynamic Graph CNN for Learning on Point Clouds.
2019. arXiv: 1801.07829 [cs.CV].

51

https://keras.io/
https://arxiv.org/abs/1801.07829

Appendix A

Dataset parameters

kind of particle | energy in GeV N

electron 1 100,000
2 100,000

3 100,000

4 100,000

5 100,000

20 40,000

30 40,000

40 40,000

60 10,000

80 10,000

muon 20 49,990
30 49,992

40 49,986

60 49,985

80 49,979

pion 20 49,999
30 49,997

40 49,993

60 49,989

80 49,988

52

APPENDIX A. DATASET PARAMETERS

kind of particle | energy in GeV N

kaon 20 49,994
30 49,995

40 49,986

60 49,990

80 49,984

proton 20 49,996
30 49,995

40 49,992

60 49,991

80 49,987

Table A.1: Detailed description of the dataset used in this work. N represents the
number of events for this class.

23

Appendix B

Longitudinal hit distribution of

hadrons

B.1 Pions, kaons, and protons with 200 hits cut

MLHD kaons at E_{prim}=
3504 -4 20 GeV HwoS
30 GeV HwoS
-4+ 40 GeV HwoS
300 { =#-- 60 GeV-HwoS
5 $-- 80 GeV HwoS
2 -4 20 GeV HwS
— 2501 30 GeV HwS
g §- 40 GeV HWS
v 60 GeV HwS
'Z 200 80 GeV HWS
G
g 150 i
€ e SRR S
=} r B .
< 100] [4
| 9
% TR E-9-8-8-5 9
50 FA Tt i\\ A
.;344 ¢
0 :;-iiii-o-q—o—o—-o—-o—-Q—Q—o—o—o—o;o—o—-o—-o—-q-o--—ﬁ‘
0 5 10 15 20 25
Layer

Figure B.1: Mean LHD of kaons using the 200 total hits cut.

o4

APPENDIX B. LONGITUDINAL HIT DISTRIBUTION OF HADRONS

4001 MLHD pions at E_{prim}=
-4 20 GeV HwoS
4-- 30 GeV HwoS

3501 =4 40 GeV HwoS
-4+ 60 GeV HwoS +%+-
| - 80 GeV HwoS % - b4

% 300 -4-- 20 GeV HwS /%« -

= 4+ 30 GeV HwS g L

L 250] 4 40 Gev Hws } |

] 60 GeV HwS { \. :,

% 00 & 80GeVHws /}, !

BILEMRESEIasy (¥
100' T/’L T i’ + @ 1 L

l/{/i{:’rri,;_&—f—i-i—i—i—i—i—{\lf‘/}i

501 ;; :

Figure B.2: Mean LHD of pions using the 200 total hits cut.

350 MLHD protons at E_{prim}=
-4-- 20 GeV HwoS
300 4-- 30 GeV HwoS
-$- 40 GeV HwoS
-%- 60 GeV HwoS
5 2501 —4-80-GeV HwoS /%+%'}-{_{—i },{
> - 20 GeV HwS H .
= - 30 GeV HwS J[Vo
© 2007 =4 40 GeV HWS % —
2 60 GeV HwS % L
. -%- 80 GeV HwS } L
8 150 o
g PIAT bbb .
1007 Y ST R xS = w i
I £ S appass e eTu I
. T/*,g’!,!’ \\;,’
: L&F
0 i:i’—t—o-q-o—o—-o--o--q--o-o-o-o-ol-o-o—-o—-&-q—o-.—o-'

0 5 10 15 20 25
Layer

Figure B.3: Mean LHD of protons using the 200 total hits cut.

95

APPENDIX B. LONGITUDINAL HIT DISTRIBUTION OF HADRONS

B.2 Hadrons with 150 hits cut

300 MLHD HwS at E_{prim}= 61 MLHD HwoS at E_{prim}=
-4- 20Gev ++ T H -4- 20Gev
250] ~+- 30Gev + - P 30 GeV
-3~ 40 Gev * 5| 4~ 40Gev
5 -$- 60 GeV 5 | -4 60GeV
S200] 4 80 Gev + + % %A} {’H’* i» % | 4 s0Gev
@ @
Q Q4
Z 150 £
5 J t phHHH * H 5 | kbbbt
: A B/
5 100 +« \i’ P-¢ S ‘
=4 % 4
/5]
50 I/*'{jiy#éif *i\#ﬁi 2
T zi::'/f ¥
Lk 1
0 5 10 15 20 25 0 5 10 15 20 25
Layer Layer

Figure B.4: Mean LHD of showering hadrons (left) and not showering hadrons
(right) with a 150 total hits cut average over all hadron types.

B.3 Pions, kaons, and protons with 150 hits cut

MLHD kaons at E_{prim}=
350 1 =%+ 20 GeV HwoS
¢-- 30 GeV HwoS
-4-- 40 GeV HwoS
30071 -3 60 Gev HwoS : o
q; —§-8OGeVHwoS O%fs@‘”@ T el
-4 20 GeV HwS A A
< 2501 30 GeV HwS 1T
g -3 40 GeV HWS 1
}'ﬂ 200 60 GeV HwS |)
< & 80 GeV HwS + !
-
@ 150 ral ;
g A1 R
=} \ U ,’
Z 100+ -T#{f
) i f * & §_§—§—-§--§--§—§—§—§_§_§ ¥ -
50’ St ’ ?,j"i \\ //
T YES ¥
s - ai
0 [3= -$-0-0-0-9-0-000-0-0-0-0-0-90000-0-4-0-0
0 5 10 15 20 25

Layer

Figure B.5: Mean LHD of kaons using the 150 total hits cut.

26

APPENDIX B. LONGITUDINAL HIT DISTRIBUTION OF HADRONS

4001 wiHD pions at E_{prim}=

-4 20 GeV HwoS
350 { —4- 30 GeV-HwoS
-4 40 GeV HwoS

-4+ 60 GeV HwoS b4
300 1 -4 80 GeV HwoS ,+’} } { %{ }"{
-&- 20 GeV HWS %%’
o+ 30 GeV HwS
250 -3 40 GeV HWS }'
60 GeV HwS /
1 -3 80Gev Hws -

150+

Number of hits per layer
N
o
o

1001 }
Tllx

Figure B.6: Mean LHD of pions using the 150 total hits cut.

MLHD protons at E_{prim}=
-4-- 20 GeV HwoS
3001 -4+ 30 GeV HwoS
-4-- 40 GeV HwoS
-4-- 60 GeV HwoS
5 2507 -3 80 GeV Hwos {%%}%%i }{
> -%- 20 GeV HwS %]
= S0 4 30GeV Hws { Vo
a -4- 40 GeV HwS { .
2 60 GeV HwS } |
?, 1501 - 80Gev st/%/ "
o] ;/
£ %: 34t rH4444- i % }{
<100+ E =1
/ I
. i% M”*””“‘ /3-3
50. T/,?//J- f;’!”_. - 9-8-9- [} i -5
1 *,:gj,r \8,
T I &% 1
0 ‘-%:*—. . .—-0--.--0--0--0-0-.-.—.—0—-0--0--0--0-—0-.-. []
0 5 10 15 20 25
Layer

Figure B.7: Mean LHD of protons using the 150 total hits cut.

o7

Appendix C

Binary particle classification

C.1 Model architectures

Model: "Binary particle classification CNN"

Layer (type) Output Shape Param #
input 1 (Inputlayer) [(None, 24, 1)] o
convld (Conv1D) (None, 22, 32) 128
convld_1 (Conv1D) (None, 20, 32) 3104
max_poolingld (MaxPoolinglD) (None, 10, 32) (2]
convld_2 (Conv1D) (None, 8, 64) 6208
convld_3 (ConviD) (None, 6, 64) 12352
global_average_poolingld (Gl (None, 64) 0

dense (Dense) (None, 64) 4160
dense_1 (Dense) (None, 64) 4160
dense_2 (Dense) (None, 2) 130

Total params: 30,242
Trainable params: 30,242
Non-trainable params: @

Figure C.1: Architecture of the CNN1 model of the binary particle classification.

o8

APPENDIX C. BINARY PARTICLE CLASSIFICATION

Model: "Binary particle classification FNN1"

Layer (type) Output Shape Param #
input 1 (Imputlayer) [(None, 24, DI o
flatten (Flatten) (None, 24) 2]

dense (Dense) (None, 128) 3200
dense_1 (Dense) (None, 64) 8256
dense_2 (Dense) (None, 64) 4160
dense_3 (Dense) (None, 64) 4160
dense_4 (Dense) (None, 64) 4160
dense_5 (Dense) (None, 64) 4160
dense_6 (Dense) (None, 32) 2080
dense_7 (Dense) (None, 2) 66

Total params: 30,242
Trainable params: 30,242
Non-trainable params: ©

Figure C.2: Architecture of the FNN1 model of the binary particle classification.

Model: "Binary particle classification FNN2"

Layer (type) Output Shape Param #
input 1 (Inputlayer) [(None, 24, D1 o
flatten (Flatten) (None, 24) 0

dense (Dense) (None, 64) 1600
dense_1 (Dense) (None, 64) 4160
dense_2 (Dense) (None, 2) 130

Total params: 5,890
Trainable params: 5,890
Non-trainable params: @

Figure C.3: Architecture of the FNN2 model of the binary particle classification.

99

APPENDIX C. BINARY PARTICLE CLASSIFICATION

C.2 DModels loss of the training process

Loss and Validation Loss Development

0.07 A

0.06 -

0.05 A

0.04 -

0.03 A

sparse_categorical_crossentropy

0.01 A

\oorAd VARV | 1 / _——

loss
val_loss

~ L

10 15 20 25 30 35
Epochs

Figure C.4: Loss of the training process of the CNN1 model.

Loss and Validation Loss Development

0.10 A

o
o
©

10.06 -

0.04 -

sparse_categorical_crossentropy

0.02 A

loss
val_loss

10

20 30 40 50
Epochs

Figure C.5: Loss of the training process of the FNN1 model.

60

APPENDIX C. BINARY PARTICLE CLASSIFICATION

Loss and Validation Loss Development

loss

val_loss
0.5 1

0.4 1

0.3 1

0.2 A

sparse_categorical_crossentropy

B e o S SNV, W PV . WS GRS W R

0.0 1

0 20 40 60 80 100 120
Epochs

Figure C.6: Loss of the training process of the FNN2 model.

C.3 LHD of wrongly classified data of the FNIN

models

LHD of wrongly classified data FNN1
electron classified as pion

8001 pion classified as electron

- mean electron

--€-- mean pion

—
()
>
5 600- hYSauiy
/ |
() f |
o V1S
[} \ ,' f .\,\ |
E ANNAMITE .\ |
u— $1 7 \"
o II A 1 AW
5 400 P
Q o A\ N\ \
[= H \ / \ |
2 b | A<\ i\
z J A ‘T" Y TR \\.
$ AN

2001 R H AL
}/ \ ‘*/. \\\
,/ 4 .l--‘ ._....--e-o-o-o o/ .-.-+vz.w)"
0. l,i/i'._ -

0 5 10 15 20 25
Layer

Figure C.7: LHD of wrongly classified events of the FNNT1.

61

APPENDIX C. BINARY PARTICLE CLASSIFICATION

900

800+

7001

Number of hits per layer

Figure C.8: LHD of wrongly classified events of the FNN2.

e-0-0

LHD of wrongly classified data FNN2
electron classified as pion
pion classified as electron

--e-- mean electron
| —%-- mean pion

- } / 4 \)1 \
t.__.._.-o—o—o-o-o--o--o--o-i,
.

‘ B AL
&m\k;&(\ N

=

5

10 15 20 25
Layer

62

Appendix D

Particle identification

D.1 Model architectures

Model: "Particle identification CNN"

Layer (type) Output Shape Param #
input_2 (Inputlayer) [(None, 24, D1 o
convld_4 (ConviD) (None, 22, 90) 360
convld_5 (ConviD) (None, 20, 90) 24390
max_poolingld 1 (MaxPoolingl (None, 10, 99) 0
convld_6 (ConvlD) (None, 8, 120) 32520
convld_7 (ConvlD) (None, 6, 120) 43320
global_average_poolingld_1 ((None, 120) %]
dense_4 (Dense) (None, 100) 12100
dense_5 (Dense) (None, 100) 10100
dense_6 (Dense) (None, 50) 5050
dense_7 (Dense) (None, 20) 1020
clasout (Dense) (None, 3) 63

Total params: 128,923
Trainable params: 128,923
Non-trainable params: ©

Figure D.1: Architecture of the CNN models of the particle identification.

63

APPENDIX D. PARTICLE IDENTIFICATION

Model: "Particle identification FNN"

Layer (type) Output Shape Param #
input 2 (Inputlayer) [(Nome, 24, 1)] o
flatten_1 (Flatten) (None, 24)]
dense_8 (Dense) (None, 128) 3200
dense_9 (Dense) (None, 64) 8256
dense_10 (Dense) (None, 64) 4160
dense_11 (Dense) (None, 64) 4160
dense_12 (Dense) (None, 64) 4160
dense_13 (Dense) (None, 64) 4160
dense_14 (Dense) (None, 32) 2080
dense_15 (Dense) (None, 3) 99

Total params: 30,275
Trainable params: 30,275
Non-trainable params: ©

Figure D.2: Architecture of the FNN models of the particle identification.

64

APPENDIX D. PARTICLE IDENTIFICATION

D.2 Confusion matrices

Confusion matrix PID CNN2 Confusion matrix PID CNN3
electrons HwS HwoS/muons electrons HwS HwoS/muons
electrons PRI 4105 25 electrons Sl 3492 42
R: 98.77% R: 98.34%

oy oy

o o

o 2

K K

3 HwS 1939 R 3723 3 HwS 2638 LRIEE 3392

k] R: 94.68% k] R: 95.25%

5 5

o o

& &

HwoS/muons 38 911 S HwoS/muons 15 986 Pt
R: 97.59% R: 97.79%
Actual labels Actual labels
Confusion matrix PID CNN4 Confusion matrix PID CNN5
electrons HwsS HwoS/muons electrons HwsS HwoS/muons
electrons ,,159303‘;‘% 4318 58 electrons ,,159953253& 4216 50
R: 99.22% R: 98.89%

Iy Iy
o o
a o
o o
3 HwS 1229 L 2432 3 HwSs 1761 meson 1665
© R: 94.85% kel R:94.21%
k=1 5
o o
- -

HwoS/muons 24 22 S HwoS/muons 12 998)

R: 98.44% R: 98.93%
Actual labels Actual labels

Figure D.3: Confusion matrix for the CNN models with (left) and without (right)
class balance weights, and for the 150 (top) and 200 (bottom) hits hadron cut. For
each class, the precision P and recall R are calculated.

65

APPENDIX D. PARTICLE IDENTIFICATION

Confusion matrix PID FNN3

electrons HwS HwoS/muons
electrons ,,1%;276339 3592 65
R: 98.11%
oy
©
k)
©
3 HwS 3026 SR, 3409
S R: 95.14%
k=1
o
I
HwoS/muons 10 990 ,,1:59%%%30
R: 97.76%
Actual labels
Confusion matrix PID FNN5
electrons HwS HwoS/muons
electrons | par%en 3576 159
R: 98.36%
Iy
o
o
o
85821
3 HwS 2604 Pr85.43% 1786
o R: 95.37%
5
o
&
HwoS/muons 18 587 ,3;59;33%;
R: 98.78%
Actual labels

Confusion matrix PID FNN4

electrons HwS HwoS/muons
electrons ,,1,59;.56%9/,‘ 3644 77
R: 98.27%
oy
o
-}
©
3 HwS 2765 R 3562
ket R: 95.27%
k=1
o
I
HwoS/muons 16 818 e
R: 97.66%
Actual labels
Confusion matrix PID FNN6
electrons HwS HwoS/muons
electrons ,,159;95632, 3923 76
R: 98.55%
w
o
o
o
85120
3 HwS 2297 P 05.60% 1619
] R: 94.59%
5
o
&
HwoS/muons 34 941 03?59;%3;
R: 98.94%
Actual labels

Figure D.4: Confusion matrix for the FNN models with (left) and without (right)
class balance weights, and for the 150 (top) and 200 (bottom) hits hadron cut. For
each class, the precision P and recall R are calculated.

66

Appendix E

Electron energy regression

10t Enim=1Gev 104 Eyin=2GeV Epin=3GeV
9 10°
10° 10
F] 2 £
310 3107 510
8 8 3
100 100 10
100 1 I 100 | il 1 10y 111
o 1 2 o 2 1 2 3 4 2 3 a4 5
Predicted energy in GeV Predicted energy in GeV Predicted energy in GeV Predicted energy in GeV
10*
Esun=5Gev Epin=20Gev Epn=30Gev Epan =40 Gev
s 102
10 107
€107 g 2
H H 3
8 S 810
10t
100 00 1w 10°
7 10 15 20 2 A 3 50

Predicted energy in GeV

4 5 6
Predicted energy in GeV.

25
Predicted energy in GeV.

Eprin =60 GeV

Predicted energy in GeV

55 60 65 70

Enin =80 GeV/

75 80 85 90
Predicted energy in GeV.

35
Predicted energy in GeV

Figure E.1: Distributions of the predicted energies of the energies E,.,,, =1, 2, 3, 4,
5, 20, 30, 40, 60, and 80 GeV for the model using FNN with energy balance weights.
The x-axis shows the predicted energy and the y-axis is the counted amount.

67

APPENDIX E. ELECTRON ENERGY REGRESSION

106 Epim=1GeV 104 prim = 2 GV ‘,,,,,,, =3GeV
10°
10% 10°
0
) @ 9
P b £102
2102 310 2
o [§] o
100 10t 10!
10° 10° I 10°—f1— I
-1 0 1 2 3 1 2 3 2 4
Predicted energy in GeV/ Predicted energy in GeV/ Predicted energy in GeV
104 T
Epnm =4 GeV 100 orim = 5 GeV Epim = 20 GeV
10 10?
£ £
3107 3
[§] o
10t
10t
i 0% 0%, |J Ju
2 3 4 5 6 10 15 20 25 30

Figure E.2: Distributions of the predicted energies of the energies E,.i», =1, 2, 3, 4,
5, 20, 30, 40, 60, and 80 GeV for the model using CNN without weights. The x-axis

Predicted energy in GeV

Predicted energy in GeV

10?

Counts

104

25
Predicted energy in GeV/

30

Eprim = 30 GeV.

35

Predicted energy in GeV/

40 35

40
Predicted energy in GeV/

Epoim =40 GeV

45

65
Predicted energy in GeV

Eprim =80 GeV

85
Predicted energy in GeV

shows the predicted energy and the y-axis is the counted amount.

68

APPENDIX E. ELECTRON ENERGY REGRESSION

100 Eprim =1 GeV 104 Eprim =2 GeV.
103
109 10°
) 2 2102
2102 2102 2
o o o
1
10! 10! 10
10° 10° = 10° 1l
-1 0 1 2 3 0 1 2 3 4 1 3 4 5
Predicted energy in GeV Predicted energy in GeV Predicted energy in GeV
Eprim = 4 GeV Eprim =5 GeV Eprim = 20 GeV
10° 10
10%
103
v 102 % %)
€ € €102
3 3102 3
(8] o o
10t 1
10! 10
10° 100 | 1090 | g |
2 3 4 5 6 3 4 5 6 7 10 15 20 25 30
Predicted energy in GeV Predicted energy in GeV Predicted energy in GeV
4
10 Eprim = 40 GeV
103
2
5 102
2
o
10t
20 25 30 35 40 30 35 40 45 50
Predicted energy in GeV Predicted energy in GeV
Eprim = 60 GeV Eprim = 80 GeV/

50 55 60 65 75 80 85
Predicted energy in GeV Predicted energy in GeV

Figure E.3: Distributions of the predicted energies of the energies E,., =1, 2, 3, 4,
5, 20, 30, 40, 60, and 80 GeV for the model using CNN with weights. The x-axis
shows the predicted energy and the y-axis is the counted amount.

69

Selbststandigkeitserklarung

Hiermit erklare ich, dass ich die Arbeit selbststandig und ohne Benutzung anderer
als der angegebenen Quellen und Hilfsmittel verfasst habe. Alle Stellen der Arbeit,
die wortlich oder sinngemafl aus Veroffentlichungen oder aus anderen fremden Tex-
ten entnommen wurden, sind von mir als solche kenntlich gemacht worden. Ferner
erklare ich, dass die Arbeit nicht - auch nicht auszugsweise - fiir eine andere Priifung

verwendet wurde.

Frankfurt a. M., den 28.09.2023

Jan Scharf

	Introduction
	Calorimeter physics
	EPICAL-2
	Analysis goal and methods
	Data

	Concept of neural networks
	The single neuron
	Feedforward neural networks
	Convolutional neural networks
	The filter kernel and convolutional layer
	Pooling
	Convolutional neural network architecture

	Performance metrics

	Analysis
	Longitudinal hit distribution
	Binary particle classification
	Particle identification
	Electron energy regression

	Summary and outlook
	Dataset parameters
	Longitudinal hit distribution of hadrons
	Pions, kaons, and protons with 200 hits cut
	Hadrons with 150 hits cut
	Pions, kaons, and protons with 150 hits cut

	Binary particle classification
	Model architectures
	Models loss of the training process
	LHD of wrongly classified data of the FNN models

	Particle identification
	Model architectures
	Confusion matrices

	Electron energy regression

