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Chapter 1

Introduction

Particle accelerators are used all over the world to study the physics of the smallest

particles through particle collisions. Many different new particles can be created in

particle collisions. A variety of particle detectors are used to identify and measure

the created particles. Calorimeters form one group of particle detectors that are

used to determine the energy of the created particles. When a particle enters a

calorimeter, it creates a particle shower. Conventional calorimeters measure the en-

ergy that is deposited inside the calorimeter by these particle showers to determine

the energy of the created particle. The digital calorimeter used in this work employs

another principle to measure the energy of the created particle. It measures the spa-

tial distribution of the particle showers, through highly-granular pixels. Therefore,

new methods for the determination of the energy of the particles are needed. Clas-

sical approaches use deterministic functions based on theoretical reasoning to derive

the energy of the particles. In this work, modern machine-learning approaches are

explored for the prediction of the energy of the created particles and the identi-

fication of the type of the created particles. In contrast to classical approaches,

machine-learning approaches determine the energy of the particle through statisti-

cal connections found in the data and do not require input from a theory. The use

of machine learning in high-energy physics is becoming more and more common.

Therefore, this work explores the possibilities of machine-learning approaches for

new digital calorimeters.

1.1 Calorimeter physics

Calorimeters represent a group of particle detectors that are used to determine the

energy of a particle entering the calorimeter. The particle entering the calorimeter

is referred to as the primary particle, which initiates a cascade of inelastic collisions

in the calorimeter. This cascade is called a particle shower. Particles produced

9



CHAPTER 1. INTRODUCTION

Figure 1.1: Illustration of an electromagnetic cascade [Fra11].

in a particle shower through inelastic collisions are called secondary particles. The

physics processes underlying the inelastic collisions depend on the type of the pri-

mary particles. Typically, one can distinguish two types of particle showers: the

electromagnetic and hadronic shower. In the following, a short description of both

types of particle showers is given [KW20].

Electromagnetic showers can be initiated by electrons, positrons, or photons. Fig-

ure 1.1 shows a cascade of an electromagnetic particle shower. A particle shower is

created through repeating processes of photon radiation by electrons and positrons

and electron-positron pair creation by photons. The radiation of photons by elec-

trons and positrons is caused by Bremsstrahlung. An important parameter is the

radiation length X0, which is defined as the length at which the primary particle’s

energy is reduced to e−1 of its initial energy through bremsstrahlung. The radiation

length depends on the characteristics of the calorimeter and especially on its mate-

rial. For example, the length needed for the particle to deposit all its energy in the

calorimeter can be estimated through the radiation length [KW20].

Hadronic showers are produced by hadrons. They can be described through mul-

tiple inelastic processes of the strong and electromagnetic interaction. Figure 1.2

illustrates a cascade of a hadronic shower. Typically, a hadronic shower can contain
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CHAPTER 1. INTRODUCTION

Figure 1.2: Illustration of a hadronic shower [KW20].

Figure 1.3: Illustration of an electromagnetic shower in a readout cell of a conven-
tional electromagnetic calorimeter [Rog].

a hadronic and an electromagnetic cascade. Electromagnetic cascades mostly occur,

when a π0, either being the primary or secondary particle, decays into two photons.

Similar to the radiation length defined for electromagnetic showers, the hadronic

absorption length λa is defined as the length at which the number of hadrons is

reduced to e−1 of the initial number of hadrons [KW20].

Different calorimeters are used to measure electromagnetic and hadronic showers.

Hadronic calorimeters require a greater depth than electromagnetic calorimeters, as

the hadronic absorption rate is generally larger than the radiation length for the

same material. Therefore, it is not expected that a hadron will deposit all its energy

in an electromagnetic calorimeter. The type of calorimeters covered in this work are

11



CHAPTER 1. INTRODUCTION

Figure 1.4: Design drawing (left) and picture of the EPICAL-2 (right) [Alm+23].

sampling calorimeters. They are built by two different alternating kinds of layers.

The passive or absorber layers initiate the inelastic collisions, and the active layers

are used to measure the energy and position of the secondary particles. In con-

ventional calorimeters, it is assumed that a particle shower occurs within a single

readout unit or cell. This is shown in Figure 1.3. A single readout unit usually

contains many active and passive layers, with which it can measure the energy of

the secondary particles. The energy deposited in this readout cell is assumed to be

proportional to the energy of the primary particle so that the energy of the primary

particle can be derived from the measurement of the cell. However, the digital pixel

calorimeter used in this work does not follow the principle of conventional calorime-

ter to measure the energy of the primary particle. The next section introduces the

electromagnetic calorimeter used in this work and its method to measure the energy

of the primary particle.

1.2 EPICAL-2

The electromagnetic pixel calorimeter EPICAL-2 is an ultra-high granularity digi-

tal electromagnetic calorimeter prototype. EPICAL-2 was developed to explore the

suitability of ALICE pixel detector (ALPIDE) chips for electromagnetic calorime-

try and its possible application in the Forward Calorimeter FoCal of ALICE at

CERN. The FoCal is an upgrade to the ALICE experiment, it combines the new

high-granularity layers with conventional calorimeter layers [Col23]. In the follow-

ing, the structure of EPICAL-2, a short description of the ALPIDE chips, and the

classical process of measuring the energy of the primary particle are given. Figure 1.4

shows a picture of the EPICAL-2 [Alm+23].

12



CHAPTER 1. INTRODUCTION

Figure 1.5: Illustration of an ALPIDE chip and a traversing charged particle [Sch22].

The EPICAL-2 consists of 24 layers. Each layer consists of a 3 mm thick tungsten

absorber and an active layer using two ALPIDE chips side by side with a thickness

of 50 µm. Each chip is made up of 512 × 1024 pixels. The two axes in a chip are

named columns and rows. The EPICAL-2 surfaces cover an area of 30 × 30 mm2,

with a sensitive area of 27.6× 29.9 mm2 and 1024× 1024 pixels. The detector has a

depth of 85 mm and ∼ 25× 106 pixels. The detector is oriented such that the first

layer has no absorber in front of the ALPIDE chips. One of the two ALPIDE chips

in layer 22 is broken and inactive [Alm+23].

Figure 1.5 shows the structure and measuring process of an ALPIDE chip. When

a charged particle traverses the ALPIDE chip, it produces charges in the form of

electron-hole pairs. The electrons are collected by diodes through electrical fields. If

the collected charge exceeds a certain threshold, then the particle is measured. Each

diode represents a pixel of the ALPIDE chip. If the collected charge in the diode

exceeds a certain threshold, then the pixel is measured as a hit. The ALPIDE chip

does not measure the deposited energy of the particle. A more detailed description

of the ALPIDE chips can be found in [Alm+23].

Figure 1.6 illustrates the pixel response to an electromagnetic shower. From the

pixel hits and their coordinates, a three-dimensional spatial hit distribution can be

reconstructed that shows the shape of the particle shower. This spatial hit distribu-

tion can be used to derive the energy of the primary particle. The classical approach

assumes a proportionality between the energy of the primary particle and the total

number of hits E ∼ Nhits. In the following, metrics for evaluating this proportional-

ity based on the dataset used in this work and later introduced are presented. The

first metric to evaluate this proportionality is the linearity between the energy of

the primary particle and the mean of the total number of hits. Figure 1.7 (left)
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CHAPTER 1. INTRODUCTION

Figure 1.6: Illustration of an electromagnetic shower and pixel layers [Rog].

shows this linearity. The mean values of the total number of hits are fitted with the

linear function y = m · x to determine the proportionality factor m. In the bottom

part of the figure, the relative difference between the mean of the total number of

hits and the linear fit function is shown. Figure 1.7 (right) illustrates the energy

resolution of the total number of hits. The energy resolution describes the relative

deviation of the total number of hits from the mean for the respective energy. Lower

energy values show a higher relative deviation of the total number of hits than the

higher values. The energy resolution of this classical approach has a proportionality

of σ
µ
∼ 1√

E
. In Section 3.4 these metrics are compared to the results of the machine

learning approach used in this work and [Alm+23].

1.3 Analysis goal and methods

In this work, the type of primary particle and the energy of electron events are

derived from the spatial distribution of the particle shower using machine learning

algorithms. An overview of the analysis goals, methods, and used data is illustrated

in Figure 1.8. The analysis is split into three tasks. The particle identification (PID)

classifies the type of primary particle of an event. The binary particle classification

(Binary Clasi) serves as a simple version of the particle identification and only

distinguishes two types of primary particles at one energy. The electron energy

regression (EER) predicts the energy of electron events. These tasks are studied with

two different machine-learning algorithms: the feedforward neural network (FNN),

and the convolutional neural network (CNN). As the spatial hit distribution consists

14
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Figure 1.7: Energy linearity (left) and resolution (right) of the classical approach,
using the total number of hits to estimate the energy of the primary particle [Sch].

of either ∼ 25×106 pixel responses (being either no hit or a hit) or usually ∼ 1×104

hits, it is not a suitable data format for the networks used in this work due to its

high dimensionality. The CNN and FNN require a smaller number of parameters

extracted from the spatial hit distribution to work efficiently. A detailed analysis of

the extracted parameter is given in Chapter 3.1.

1.4 Data

To create the different machine learning models used in this work, data is needed.

The model algorithms require a dataset in which the type of primary particle and its

energy are known for every event. Therefore, the dataset used in this work contains

Monte Carlo simulations of the EPICAL-2 detector response and thus its measure-

ments of the spatial hit distribution. The EPICAL-2 simulation is performed using

Allpix2, which is a generic pixel detector simulation framework based on GEANT4

and ROOT [Alm+23]. A simulated event consists of registered hits and their coordi-

nates. In the simulation, one chip in layer 22 is set inactive, as the chip is broken in

the detector. The dataset consists of different types of primary particles at different

energies. In the following, the energy of the primary particle is denoted with Eprim.

The content of the dataset is described in Table 1.1. The dataset was provided by

[Rog].
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Figure 1.8: Illustration of the different analysis tasks (green), methods (red), and
data format (blue) they work on.

Particle Eprim in GeV Number of events per energy
e− 1, 2, 3, 4, 5 ∼ 100, 000
e− 20, 30, 40, 60, 80 ∼ 40, 000
µ− 20, 30, 40, 60, 80 ∼ 50, 000
π+ 20, 30, 40, 60, 80 ∼ 50, 000
κ+ 20, 30, 40, 60, 80 ∼ 50, 000
p+ 20, 30, 40, 60, 80 ∼ 50, 000

Table 1.1: Datasets used in this work. A more detailed description of the number
of events per energy can be found in Appendix A.

Figure 1.9 shows examples of the spatial hit distribution of a simulated hadronic

(left) and electromagnetic (right) shower. Figure 1.10 projects these spatial hit dis-

tributions onto the columns to emphasize the difference between the two types of

showers. The two example events show a significantly different spatial hit distri-

bution and therefore can be distinguished from each other. The pion event has a

narrower particle shower and fewer hits than the electron event. This is important,

as the particle identification and the calculation of the energy of the primary parti-

cle are based on the differing spatial hit distribution. The next chapter provides a

detailed description of the two machine-learning approaches used in this work.

16
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Figure 1.9: Spatial hit distribution of an example pion (left) and electron event
(right).

Figure 1.10: Projection on to the columns for a pion event (left) and electron event
(right). These are the same events as in Figure 1.9.

17



Chapter 2

Concept of neural networks

This chapter introduces the feedforward and convolutional neural network. Before

the detailed description of these neural networks, general terms of machine learning

are introduced and explained. Then, metrics that are used to evaluate the per-

formance of the models shown in this analysis are described. The introduction to

neural networks follows the arguments in [Gér22].

In machine learning and other kinds of data analysis, datasets are collections of

individual data points. A data point is represented by the features of this data

point. However, other features of a data point that are not given or measured might

be of interest to the analysis. These other features usually correlate with the given

features and thus can be estimated or calculated. For example, a healthiness or

nutritional content score, such as the Nutri-score, of a dataset containing different

food items, is calculated. Every food item is defined by salt, fat, and other nutri-

tional contents. Calculating the healthiness or nutritional content score represents

a new derived feature. In machine learning, the given features are called features of

the data point, and the features that have to be derived are called labels.

The class of machine learning algorithms used in this work aims to find a func-

tion that maps the features to the labels. This requires data where the labels are

already known, also called labeled data. All machine learning algorithms requiring

labeled data to find the optimal mapping function are called supervised algorithms.

The process of determining a mapping function is called training. After training,

the algorithm can be used on unlabeled datasets to predict their labels. There are

two different kinds of labels, continuous values and classes. The group of machine

learning algorithms that handle labels with continuous values is called regression,

and the group of machine learning algorithms that work on class labels is named

classifications. The task of a machine learning algorithm is defined by its objective,
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CHAPTER 2. CONCEPT OF NEURAL NETWORKS

Figure 2.1: The structure of a single neuron, modified [Gér22].

containing the derived features and their respective data format. The success of

a machine learning algorithm depends on the specific task and the model used to

achieve it.

After this general introduction to machine learning algorithms, three kinds of su-

pervised machine learning algorithms are presented. In this thesis, the analysis uses

two types of algorithms: the feedforward neural network (FNN), and convolutional

neural network (CNN). All the networks consist of base units that are also described

in the following.

2.1 The single neuron

The single neuron is the base unit of the feedforward neural network. Figure 2.1

shows the structure of a neuron. In this example, three input values are used to

calculate the output of the neuron. Generally, the number of input values is defined

by the number of features of the data points. For M features, the input for the data

point i is written as a feature vector or a so-called input vector X⃗ i = (xi
1, x

i
2, · · · , xi

M).

Every input gets multiplied by an adaptable weight wm, which is stored in the so-

called weight vector W⃗ = (w1, w2, · · · , wM). The products are added up with a bias

b. This sum is called activation a. The calculation of the activation a is equivalent

to a linear regression. An activation function σ(a) is applied to the activation.

This function usually adds a non-linearity to the neuron. The neuron’s activation

function can be chosen from a set of several different linear and non-linear functions.

The result of the activation represents the output of the neuron. Here, the output

19



CHAPTER 2. CONCEPT OF NEURAL NETWORKS

of the neuron is described as zi. The following equation describes this process:

zi = σ(
M∑

m=1

wm · xi
m + b) . (2.1)

It is good practice to split the dataset into a training, validation, and test dataset

before the training of a neuron. The weights and biases are adjusted using the

training dataset to minimize the difference between predicted and actual labels.

This optimization process is called training. Training is performed on every data

point in the dataset and repeated multiple times. One complete iteration over the

training dataset is called an epoch. The validation and test dataset are used for the

evaluation of the model performance at different steps. A more detailed description

of the training process and the different activation functions can be found in [Gér22].

2.2 Feedforward neural networks

A feedforward neural network, or FNN for short, is built by combining single neurons

side by side and in series. This network only passes values in one direction, called

forward, giving it the name forward neural network. It can be separated into layers,

with each layer receiving the output values of the previous layer as their input

values. A layer can contain one or more neurons that work side by side, they are not

connected to each other but to all the neurons of the previous layer. A layer of the

feedforward neural network is referred to as a dense layer. Figure 2.2 illustrates the

structure of a feedforward neural network. The first layer is called the input layer.

This layer is not made of neurons but symbolizes the input feature vector X⃗ i. The

last layer is called the output layer. All layers between the input and output layers

are named hidden layers. Commonly, the neurons used in the hidden layer have

the same activation function. The output layer usually has a different activation

function depending on the task of the network. Feedforward neural networks only

work on data that can be represented in a vector and higher dimensional data can

result in a high number of weights, which is not computationally efficient. For

example, a feature vector with 1024 features is connected to a dense layer with 1024

neurons. This already uses 1024 · 1024 ≈ 1× 106 weights and 1024 biases. Because

of this, other networks targeting different data types were developed.
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Figure 2.2: The basic structure of a neural network [Gér22].

2.3 Convolutional neural networks

Another kind of neural network used in this work is the convolutional neural network,

or CNN for short. In contrast to the feedforward neural network, a convolutional

neural network works on grid-structured data and not just vectors. It is also more

efficient on high-dimensional datasets. Convolutional neural networks are usually

used for images, as they can capture two-dimensional related features. A particle

shower measurement of the EPICAL-2 can be described as a three-dimensional pic-

ture, introducing the use of convolutional neural networks to this work. However,

this is not computationally efficient. The analysis chapter describes this problem

in detail. In the following sections, the conceptual idea of a convolutional neural

network and the kind of data it works on its base unit, and the architecture of a

convolutional neural network are introduced.

The CNN is inspired by the visual cortex of a human. In the visual cortex, many

neurons have a small local receptive field, which means that the neurons are limited

to stimulation from a specific visual field region. In Figure 2.3 five neurons and their

local receptive field of a house are shown. By combining the information from the

features these five neurons have detected, such as lines and edges, more complex

features can be constructed. CNNs use this approach and combine features from

local receptive fields into more complex features. But instead of the local receptive

field being limited to one part of the visual field, it is limited to one specific feature

in the visual field. For example, the local receptive field of the CNN searches for the

location of a car in a picture (note that a car is already a complex feature and is
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Figure 2.3: Illustration of a local receptive field and the combination of simple
features to complex features [Gér22].

not the first feature the network sees). The CNN uses the mathematical operation

of convolution to create a local receptive field, which gives the network its name

[Gér22].

CNNs are mainly used in computer vision, which is a field of machine learning

that is used for gird-like data from images and videos. It can only work on data

that can be represented in a tensor. This means only picturelike data, with a grid

symmetry, can be processed. Since CNNs are mostly used on pictures, the features

a data point is represented by are usually called pixels.

2.3.1 The filter kernel and convolutional layer

The base unit of a convolutional neural network is called the filter kernel and rep-

resents the adaptation of a local receptive field. The convolutional layer combines

multiple filter kernels into the core layer of the CNN. There are different kinds of

convolutional layers depending on the dimensionality of the data. This introduction

covers two-dimensional data that are represented in a matrix, such as pictures, but

convolutional layers for one-dimensional and three-dimensional data follow the same

principle. The two-dimensional convolutional layer is called Conv2D in the following

and also in the programming library used in this work [Ten23].

The filter kernel consists of a weight matrix W which has the shape (fh × fw)

with fh being the height and fw the width of the filter kernel in pixels and a bias

b. For a filter kernel with a height of fh = 3 and width of fw = 3, W has a shape

of (3 × 3). Thus, this filter kernel consists of ten adaptable weights. The filter

kernel shown in Figure 2.4 has the same size and illustrates the calculation process.

The filter kernel is placed on a region of the input matrix X with the same size as

the filter kernel. Every pixel xi′,j′ ϵ X from the specific part of the input matrix
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is multiplied by its overlying weight and added up to form the activation ai,j. An

activation function σ(a) is applied on the activation to calculate the output zi,j. The

output can be represented in an output matrix Z. Then the filter kernel is moved

to the next section of the input data. In Figure 2.4 this is visualized with the first

region colored in red and then the filter kernel is moved to the blue-colored region.

The next region of the input data is defined by the stride or step size. The stride

S⃗ = (sh, sw) defines how many pixels the filter kernel moves to the next part of the

input data. A visualization of stride is given in Figure 2.5, where a stride of (2, 2)

was defined. This means the filter kernel moves 2 pixels to the right to reach the

blue region. The same weights are used for every region of the input data, which

is referred to as weight sharing. This minimizes the number of weights and makes

the number of weights independent of the size of the input matrix. The calculation

described above can be expressed through the following equation, with xi′,j′ being a

pixel from the input data and zi,j being a pixel from the output of the filter kernel:

zi,j = σ(ai,j) = σ(b+

fh−1∑
u=0

fw−1∑
v=0

xi′,j′ · wu,v) with

{
i′ = i · sh + u

j′ = j · sw + v
. (2.2)

The output matrix Z of a filter kernel is called feature map. Because the filter kernel

is seen as a local receptive field searching for a specific feature, the output data is

thought of as a map of the input data that is specifically weighted for this feature.

This means that the feature map also saves where this feature is detected.

The size of the output data is not necessarily the same as the input data. Usu-

ally, the size of the output data is reduced, but it depends on the size of the filter

kernel and the stride chosen. In Figure 2.4 a different stride is chosen as in Fig-

ure 2.5 resulting in a different size of the output in these figures. Other techniques

such as zero padding can be used to change the size of the output feature map. Zero

padding is not applied in this work, but an introduction can be found in [Gér22].

A convolutional layer combines multiple filter kernels side by side. The combi-

nation of multiple filter kernels allows the convolutional layer to search for multiple

features at once. Using multiple filter kernels side by side produces multiple fea-

ture maps. To handle multiple feature maps, a new third dimension is introduced,

stacking the feature maps on top of each other. For example, for n feature maps

of the size (d′h × d′w), the output of this layer has the shape (n × d′h × d′w). The

following convolutional layer uses this output as its input data. This implies that a

convolutional layer needs to handle input data that consists of stacked feature maps

or multiple picture representations. The extra dimension n is added to the filter
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Figure 2.4: Visualization of a (3× 3) filter kernel and zero padding [Gér22].

Figure 2.5: The same visualization as used in Figure 2.4 for a (3 × 3) filter kernel,
now including a stride of sh = 2, sw = 2 [Gér22].

kernel as well, expanding its shape to (n× fh × fw), which can now handle a stack

of feature maps as input data. This means the filter kernel goes through the whole

stack of feature maps or picture representations at every step. Figure 2.6 illustrates

the use of multiple convolution layers on an RGB (red, green, blue) representation of

a picture. By adding another dimension to the filter kernel, the amount of weights

increases with the factor n: |W′| = n · |W|. For a filter kernel with the shape (3×3)

and 4 feature maps, 3 · 3 · 4 + 1 = 37 weights are used. The weights are not shared

for different feature maps, as illustrated in Figure 2.6. The input data can also be

described as a stack of pictures, such as RGB pictures that have red, green, and

blue pixel representations, as shown in Figure 2.6. This means that the first layer

may already have to handle multiple feature maps. The initial Equation 2.2 can be

expanded to handle multiple feature maps, so the filter kernel k from a convolution

layer is represented by the following expression, with n being the number of feature
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Figure 2.6: Visualization of two convolutional layers using an RGB picture as input
data [Gér22].

maps in the input data and xi′,j′,k′ a pixel from this stack of input data:

zi,j,k = σ(bk +

fh−1∑
u=0

fw−1∑
v=0

n−1∑
k′=0

xi′,j′,k′ · wu,v,k′,k) with

{
i′ = i · sh + u

j′ = j · sw + v
. (2.3)

2.3.2 Pooling

Only using convolutional layers in a network works well on small images, but for

bigger images, such as (256 × 256) pixel pictures, many layers, and higher strides

are needed to reduce the size of the output data. To solve this problem, pooling

operations are introduced. Pooling layers depict a modified version of the filter ker-

nel, that does not use any adaptable weights. They used aggregation functions to

reduce the dimensionality and information of the input data. The max, min, and

average functions are the most widely used aggregation functions. Two main types

of pooling layers, global and local pooling, are distinguished.

The local pooling operation, illustrated in Figure 2.7, is very similar to a filter

kernel. But instead of multiplying weights to the input pixels, an aggregation func-

tion is performed on the region of the pooling kernel. Also, pooling operations

are always performed separately for each feature map (pooling through all feature

25



CHAPTER 2. CONCEPT OF NEURAL NETWORKS

Figure 2.7: Visualization of local max pooling [Gér22].

maps is called depthwise pooling, but is not needed in this work). Usually a stride

of the same size as the kernel size is used to achieve the most efficient dimension

reduction while using all the pixels. The most commonly used local pooling layer

called MaxPooling2D in this work and the programming library applied in this work

[Ten23], uses a kernel size of (2×2), a stride of (2, 2), and the max aggregation func-

tion. Equation 2.3 can be modified to describe a pooling layer, using an aggregation

function ⊕ for the feature map k of the n feature maps:

zi,j,k = ⊕(

fh−1∑
u=0

fw−1∑
v=0

xi′,j′,k) with

{
i′ = i · sh + u

j′ = j · sw + v
. (2.4)

The difference between global pooling and local pooling is that the pooling operation

is applied to the whole feature map at once. Therefore, global pooling is performed

on all pixels of the feature map and not just on one region. This reduces the whole

feature map to one value or a stack of feature maps into a vector. The output vector

Z⃗ = (z0, z1, · · · , zn) has the same length n as the number of input feature maps. The

global pooling operation for the feature map k can be summed up into an equation,

with dh and dw being the height and width of the feature map.

zk = ⊕(

dh−1∑
u=0

dw−1∑
v=0

xu,v,k) . (2.5)
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2.3.3 Convolutional neural network architecture

A convolutional neural network does not only use convolutional and pooling layers.

Convolutional layers and filter kernels operate based on the principle of identifying

simple features and combining them into complex features. This process can also

be described as feature extraction. However, a convolutional neural network should

not only extract features but find a mapping function to perform a specific task.

It was found, that using only convolutional and pooling layers is not able to suffi-

ciently find this mapping function. To resolve this issue, dense layers are used after

the convolutional layers to find a mapping function from the extracted features to

the specific task. With this, a convolutional neural network can be divided into

two parts. The first part uses convolutional and pooling layers to extract complex

features that are the best-dividing features for the dataset. The second part of the

network resembles a feedforward neural network, mapping the best-dividing features

to the specific task. For the transition between the parts, global pooling or flatten

layers are used. A flatten layer converts any tensor into a sequential vector.

2.4 Performance metrics

This section introduces performance metrics for classifications and regressions that

are used in the next chapter. Precision, recall and accuracy are performance metrics

used to evaluate classification models. The three metrics are introduced based on

a binary classification with the labels positive and negative but are not limited to

binary classifications Figure 2.8 illustrates the calculation of these metrics. The true

positive (tp) is the number of positive data points predicted as positive data points,

the same goes for the true negative (tn) with negative data points. False positive

(fp) is the number of negative values classified as positive data points, the other way

around is called false negative (fn). Accuracy is the relative number of data points

that are predicted correctly. Precision measures the percentage of the number of

data points that are predicted correctly into a specific class by the model to the total

number of data points classified as this class, increasing the precision minimizes the

number of false positive data points. Recall measures the relative number of data

points that are predicted correctly by the model to the total number of data points

in this class, this means it measures how many positive data points are found and

identified by the model. By increasing the recall, the number of false negative data

points decreases. These metrics are not independent of each other and, especially

precision and recall, should be considered together. For multiple classes, these met-

rics are usually calculated for every class [JM23].
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Figure 2.8: Confusion matrix for a binary classification system, with the golden
labels being the actual labels of the data points [JM23].

The metric or loss function mostly used for regression tasks is the mean-squared

error (MSE). The difference between a metric and a loss function is that loss func-

tions are used to optimize the neural networks and metrics are used to further

analyze the results and performance of the neural network. The MSE is the average

squared difference between the predicted output value ŷ and the true label y with

the following equation:

MSE(ŷ) =
1

N

N∑
i

(yi − ŷi)
2 . (2.6)

The MSE is not equal to the variance of the predicted values, as the true label is not

necessarily the same value as the mean of the predicted values. However, the MSE

can be written as the variance of the predicted values with an added bias term. A

more detailed explanation of this bias and its connection to the MSE can be found

in [Jam17].

28



Chapter 3

Analysis

This chapter presents a detailed description of the analysis methods used in this

work and their results. The two main goals of this analysis are the identification of

the type of primary particle and the prediction of the energy of the primary particle

for electron events using neural networks. To test the analysis methods, first, a

simplified particle identification called binary particle classification is studied. FNNs

and CNNs are used to explore all three tasks. However, the spatial hit distribution

of an event is too large to be efficiently used in a FNN or CNN. For example,

a three-dimensional CNN using the spatial hit distribution as a three-dimensional

image takes ∼ 1 minute to classify or predict 10 events on the server architecture

used for this work. This means for a training dataset containing 100, 000 data

points that one training epoch, one iteration of the training dataset, would take ∼ 7

days. Usually, multiple epochs are required during training, making this approach

impossible. To reduce the size of the data from the spatial hit distribution, the

longitudinal hit distribution is introduced, which is a parameter extracted from the

spatial hit distribution. In the following, the longitudinal hit distribution is studied

for its usability for the three presented tasks.

3.1 Longitudinal hit distribution

In this section, the longitudinal hit distribution (LHD) is introduced, which is used

as an input parameter for the neural network models presented in the next section.

The LHD describes the number of hits per layer for all 24 layers of the EPICAL-2.

With that, the number of features of the data is reduced from 25 × 106 zeros or

ones to 24 values. In the following, the distinctiveness of the LHD originating from

different particle types and energies is studied.
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Figure 3.1: Mean LHD of pions (blue), electrons (orange), muons (green), protons
(red), and kaons (purple) at Eprim = 20 GeV.

First, the LHD is studied for a fixed energy of Eprim = 20 GeV to examine the

LHD of different primary particles. Figure 3.1 displays the mean LHD of electrons,

pions, kaons, protons, and muons at an initial energy of Eprim = 20 GeV. The figure

shows three distinctive shapes of the LHD for the different primary particles. The

mean LHD of electrons displays a maximum in the lower layers and a decrease in

the number of hits per layer in the higher layers. In contrast to this, the mean LHD

of hadrons has no maximum but shows a steady increase in the number of hits per

layer. Muons are not expected to shower in an electromagnetic calorimeter, and

therefore the LHD of muons does not display any maximum or significant increase

in the number of hits per layer. In the following, the LHD of hadrons, muons, and

electrons are studied separately for all energies of the primary particle used in this

work.

The specific types of hadrons can not be distinguished well with their LHD and

therefore pions, kaons, and protons are referred to as hadrons in the following.

As hadrons can also develop electromagnetic cascades, it is useful to divide the

hadron events into showering hadrons (hadrons with shower, HwS) and not show-

ering hadrons (hadrons without shower, HwoS) as their LHD varies strongly. To

study this variation, Figure 3.2 shows the total number of hits per event to divide

the hadrons in these two classes. In the figure, the total hit distribution of all ener-
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Figure 3.2: Distribution of total hits per event for pions (green), muons (yellow),
protons (blue), kaons (red) with all energies and comparison to electrons (orange)
at Eprim = 1 GeV. Multiple lines with the same colors are drawn for the different
energies between Eprim = 20 to 80 GeV for all hadrons and muons. The black
dashed and black dotted lines represent cuts made to define showering hadrons and
not showering hadrons. The figure is limited to 500, but higher numbers of total
hits than this limit exist.

gies of the primary particles that are studied in this work for hadrons and muons are

shown in the same color and the total hit distribution of electrons at Eprim = 1 GeV

is displayed for comparison. The total hit distribution of hadrons has a maximum

between 50 and 100 hits, which does not show an energy dependence. Two cuts

at 150 and 200 total hits are studied, which divide the hadrons into not showering

hadrons with a lower number of total hits and showering hadrons with a higher

number of total hits than the chosen cut. The 150 total hits cut is introduced

since almost all total hits of electrons at Eprim = 1 GeV, which are considered as

showers, have a number of total hits larger than the 150. On the other hand, the

200 total hits cut is chosen to include the majority of the total hit distribution of

hadrons as not showering hadrons, because it is generally not expected that hadrons

do shower or deposit their total in an electromagnetic calorimeter. With these two

cuts, the hadrons can be separated into the two classes of showering and not show-

ering hadrons.
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Figure 3.3: Mean LHD of showering hadrons (left) and not showering hadrons (right)
with a 200 total hits cut averaged over all hadron types.

The mean LHD of hadrons after employing a total number of hits cut has dif-

ferent shapes for showering and not showering hadrons. Figure 3.3 shows the LHD

of showering (left) and not showering hadrons (right) using the 200 total hits cut.

The comparable figure using the 150 total hits cut can be found in Appendix B.2.

The showering hadrons (right) show an increase in the number of hits per layer as

a function of the layers, also a maximum is seen in the range of layers 15 to 21.

A strong energy dependence is observed as well. The not showering hadrons (left)

display only a small increase in the number of hits per layer as a function of the

layers, and no energy dependence is found. The figure only illustrates the mean

LHD averaged of all types of hadrons. The mean LHD for pions, kaons and pro-

tons can be found in Appendix B.1 using the 200 total hits cut and in Appendix

B.3 using the 150 total hits cut as a small difference in the magnitude of the mean

LHD of showering hadrons of the different hadron types for the same energy of the

primary particle is seen. Nevertheless, the showering hadrons class is not divided

into its specific hadron type. The mean LHD of showering hadrons shows an energy

dependence, which makes the prediction of the energy of the primary particle on

the LHD possible. However, as the hadrons do not deposit all their energy in the

EPICAL-2, the usefulness and validation of this prediction are questionable.

Figure 3.4 (left) shows the mean LHD of muons, which has a similar shape as the

mean LHD of the not showering hadrons. The muon LHD displays only a small en-

ergy dependence, with a maximal difference of ∼ 1.5 hits per layer between 20 and 80

GeV. Comparing this to the energy dependence of the showering hadrons, the energy

dependence of the muons is negligible. As the muons and not showering hadrons
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Figure 3.4: Mean LHD of muons (left) and electrons (right) of different energies.

have a similar shape, they are treated as one class in the particle identification task.

Figure 3.4 (right) shows the mean LHD of electrons. It displays a strong energy

dependence, which allows the electron energy prediction task to work on the LHD.

The mean LHD of electrons of all energies has a maximum in the lower layers and a

decrease in the number of hits per layer in the higher layers. The maximum of the

mean LHD moves to higher layers and higher magnitude or total hits with increasing

energy. Figure 3.5 illustrates this with the relative distribution of the maximum of

the LHD of electrons for the different energies of the primary particle. The figure

also shows that the maximum is not equal in all events of one energy but follows the

distribution in the figure. Therefore, it is expected that the LHD of an individual

electron event does not necessarily have the same maximum position as the mean

LHD of electrons.

In conclusion, the LHD is a useful parameter for neural networks to predict the par-

ticle type, or rather decide between electrons, showering hadrons, and non-showering

hadrons/muons. Also, the prediction of the electron energy is possible through the

strong energy dependence of the LHD. Another parameter that can be of interest

for future studies is the lateral shower profile, as it is expected to differ for hadronic

and electromagnetic showers.
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Figure 3.5: Probability distribution of the maximum layer of the LHD for electrons.

3.2 Binary particle classification

First, the simple binary particle classification is studied. The goal is to classify the

primary particle of an event either as a pion or an electron with an initial energy

of Eprim = 20 GeV. By reducing the types of primary particles and energies of the

primary particle, the LHD as a parameter for the neural networks and the neural

network architectures can be tested in a more explainable environment than in the

full particle identification.

The dataset for this task consists of 40, 000 events, with 20, 000 events for pions

and electrons each. It is split into the training dataset containing 24, 000 events,

the validation dataset with 8, 000 events, and the test dataset holding 8, 000 events.

The datasets contain an equal amount of events from both classes. The LHD is

extracted for all events and used as input for the neural network, the mean longitu-

dinal distribution of the two classes is shown in Figure 3.1.

Three neural networks are compared for the binary particle classification: two FNNs

and one CNN. As the layer with the maximum of the LHD varies over individual

events for the LHD of electrons and showering hadrons, as seen in Figure 3.5 for the

electrons, a pure FNN approach that is directly connected to the LHD of every layer
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may not be the most efficient. For this reason, a CNN is chosen as a comparison as

it does not directly connect to the LHD of every layer, but searches for features in

the LHD. One network uses a CNN before the FNN, and two FNNs are trained to

study this hypothesis. The network using a CNN is named CNN1, and the model

only using a FNN with the same number of parameters, meaning weights and bi-

ases, as CNN1 is named FNN1. The third model is a FNN named FNN2 with fewer

parameters than the other models to study if a smaller number of parameters is suf-

ficient to solve the binary particle classification task. To transition from the CNN

to the FNN in the CNN1, a one-dimensional global average pooling layer is applied.

The input layer of all networks uses the 24 values of the LHD, and the output layer

uses two neurons with a softmax function, representing the electron and pion. All

other hidden layers use the GELU activation function. The model is compiled with

the NAdam optimizer, sparse categorical cross-entropy as a loss function, and early

stopping. The metrics calculated are the accuracy, precision, and recall. A detailed

description of these functions can be found in the program libraries documentation,

such as [Ten23]. The full network architecture can be found in Appendix C.1. No

optimization was performed on the model architecture, but could be considered for

further studies and optimization.

All models show an overall good performance on the binary particle classification

task and have similar performance metric values. The evaluated metrics of precision,

and recall introduced in Section 2.4 for the predictions of the test dataset are listed in

Table 3.1. The class accuracy is calculated differently than the introduced accuracy

by dividing the number of correctly classified events by the total number of events

from this class. The CNN1 shows the best electron accuracy and the FNN1 has the

best pion accuracy, but all networks only have small differences in these metrics.

To further study the precision and recall the absolute values of true positive, false

positive, etc. are illustrated in the confusion matrix for every model in Figure 3.6.

The confusion matrix of CNN1 shows that two electrons were wrongly classified as

pions and 22 pions were identified as electrons. The other two models both have 4

misclassified electrons and a lower number of falsely identified pions than the CNN1.

Figure 3.7 illustrates the LHD of the misidentified events of the CNN1 in comparison

to the mean LHD of electrons, and pions. Similar figures for the FNN1 and FNN2

can be found in Appendix C.3. The wrongly classified pions show a significantly

different LHD than the mean pion distribution and rather follow the mean distri-

bution of electrons. This indicates that the wrongly classified pion events shower in

the EPICAL-2, which further motivates the division of hadrons into showering and

not showering events to improve the model performance on the LHD. In contrast
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metrics in % CNN1 FNN1 FNN2
el accuracy 99.95 99.90 99.90
el precision 99.45 99.60 99.48
el recall 99.95 99.90 99.90
pi accuracy 99.45 99.60 99.48
pi precision 99.95 99.90 99.90
pi recall 99.45 99.60 99.48

Table 3.1: Comparison of test performance metrics in the binary particle classifica-
tion task.

to the FNN models, the CNN1 was able to correctly classify electron events that

shower in higher layers and that were wrongly identified by the FNN1 and FNN2,

shown in Appendix C.3. Even with the wrongly classified electron event that starts

showering in the layer 13, the CNN1 is more robust against varying shower starts

than the FNN models.

The good performance of the models shows that the LHD is sufficient as an in-

put parameter for the studied models for the binary particle classification task.

Compared to the FNN models, the CNN1 is more robust to varying shower starts of

the LHD of electrons. For future studies, the lateral hit distribution can be added to

the LHD as an input parameter and an optimization of the network architecture can

be performed to further increase the performance of the models. As these models

show good performance on this simple task, they present a starting point for particle

identification and electron energy regression.
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Figure 3.6: Confusion matrix with precision and recall of the CNN1 (top), FNN1
(bottom left) and FNN2 (bottom right) model.

3.3 Particle identification

As the simple binary particle classification task showed a good performance, the task

can be broadened to include more primary particle types and energies. In this task,

the type of the primary shower particle should be identified from the full provided

dataset introduced in Section 1.2. The main target is to classify electron events

correctly, to later derive their energy from the shower shape. This is not possible

for hadrons and muons, as not all their energy is deposited in the EPICAL-2.

It is useful to divide the dataset into three classes for the particle identification:

electrons, hadrons with shower, and hadrons without shower or muons. This sep-

aration is done to get better-dividing shapes of the LHD, which is studied in the

previous Section 3.1. As it is also the main target to identify electrons, an extensive

distinction between the different hadrons is not necessary. Here, models using the

150 and 200 total hits hadron cut are compared. The dataset includes 1, 646, 413

events, that are unequally distributed over the pions, kaons, protons, electrons,

muons, and their energies. The exact number of events per type of primary particle
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Figure 3.7: LHD of wrongly classified events by the CNN1 and for comparison the
mean LHD for electrons and pions at Eprim = 20 GeV.

and energy of the primary particle can be found in Appendix A. The number of

events per type of hadron and its energy also depends on the cut that divides the

hadron events into showering hadrons and not showering hadrons. For example, the

200 hits hadron cut creates 640, 000 events of electrons, 368, 083 events of showering

hadrons, and 638, 330 events of non-showering hadrons and muons. To counteract

this unequal distribution, class balance weights are given to each of the three classes

and the different energies. For i being a combination of one of the three classes

and one energy, the class balance weights for all events in i are calculated with the

following formula:

ωi =
0.25 ·Ntot

Ni

(3.1)

withNi being the number of events in i andNtot the total number of events. 0.25·Ntot

was chosen as a normalization to get class balance weights of a similar magnitude

and greater than 0.25 and to shift the range of the class balance weights to smaller

values. These class balance weights are used during the training of the model to

weigh the training loss and ensure all classes and energies are learned equally well.
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Eight different models are trained for the 150 and 200 total hits cut for hadrons,

either following the FNN1 or CNN1 structure and for each a model using the class

balance weights and one without class balance weights. All models use the LHD as

input and thus have a 24 neuron input layer. They use GELU as activation function,

and they have a three-neuron output layer using the softmax activation function.

The CNN models have a significantly higher number of parameters than the FNN

models. The full model architecture is given in Appendix D.1.

All models show a similar performance on the task. In Figure 3.8 the categori-

cal cross-entropy of the test dataset is plotted for the eight models and each class

separately. For the electrons, a trend can be seen that the models with class balance

weights have a lower test loss than the models without class balance weights, and

the models using the 200 total hits cut outperform models with the 150 total hits

cut. In the test loss of the non-showering hadrons and muons, the models using the

200 total hits cut also perform better. However, models with class balance weights

show a different trend, the models using the class balance weights have a higher test

loss than the models without class balance weights. No significant trend is found

for the showering hadrons. In Table 3.2 more test metrics are compared. No model

outperforms the other models in all metrics. However, the CNN models show a

better performance for the electron class, and the models using the 200 total hits

cut tend to have better accuracies than the models using the 150 total hits cut.

The CNN4 has the highest total accuracy of 97.96%, nevertheless, all models have

a total accuracy between 97% and 98%. The confusion matrix for every model can

be found in Appendix D.2.

In general, the performance of all models is similar. Models using the 200 total

hits cut and class balance weights mostly have higher performance metrics than

models without. Nevertheless, a general trend could not be observed. To further

improve this task the model architecture, the hadron cut, and the class balance

weights could be optimized.
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metrics in % CNN2 CNN3 CNN4 CNN5 FNN3 FNN4 FNN5 FNN6
total hits cut 150 150 200 200 150 150 200 200

class bal. weights yes no yes no yes no yes no

accuracy 97.38 97.42 97.96 97.88 97.29 97.35 97.87 97.83
El accuracy 96.29 96.22 96.58 96.33 95.92 96.04 96.12 96.15
El precision 97.46 97.81 97.32 97.38 97.73 97.69 97.69 97.53
El recall 98.77 98.34 99.22 98.89 98.11 98.27 98.36 98.55

HwS accuracy 89.31 89.52 91.14 90.75 89.06 89.27 90.94 90.65
HwS precision 94.04 93.71 95.89 96.12 93.30 93.42 95.13 95.60
HwS recall 94.68 95.25 94.85 94.21 95.14 95.27 95.37 94.59

HwoS accuracy 97.00 97.16 98.23 98.30 97.14 97.14 98.41 98.34
HwoS precision 99.38 99.35 99.78 99.36 99.35 99.45 99.62 99.39
HwoS recall 97.59 97.79 98.44 98.93 97.76 97.66 98.78 98.94

Table 3.2: Comparison of test metrics for electrons (El), hadrons with shower (HwS),
and hadrons without shower/muons (HwoS). The best (darker) and second-best
(lighter) models of a metric are highlighted.

3.4 Electron energy regression

The previously discussed models can only predict the type of primary particle initi-

ating the particle shower. However, also the energy of the primary particle can be

determined from the spatial hit distribution. The classical approach of calculating

the energy of the primary particle is introduced in Section 1.2. This section explores

the machine learning approaches for the prediction of the energy of electron events.

The energy prediction can only be performed for electrons, as they are the only par-

ticles included in this works’ dataset that deposit all their energy in the EPICAL-2.

The dataset for this task consists of electron events with different discrete ener-

gies from Eprim = 1 to 80 GeV. As the dataset only includes discrete energy values,

the particle identification task could be interpreted as a classification, where an

electron event is classified as one of the given energies. However, real measurements

usually include continuous energy values instead of discrete energy classes. There-

fore, a regression task is more useful for further applications that do not use discrete

energy values. However, using discrete energy classes as training data for a regres-

sion task can result in unique problems, which are not found in a regression task

trained with continuous values or in a classification task with class values. This will

be discussed later in this section in more detail. The number of events per energy

class is unequally distributed in the dataset for the particle identification class. For

this, the class balance weights of Equation 3.1 are used again. A modified version

of the FNN and CNN used in the previous task are implemented here. They have a
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Figure 3.8: Comparison of the test loss of all models for the electrons, showering
hadrons (HwS) and not showering hadrons/muons (HwoS and muons) class.

similar architecture as Appendix D.1, but their output layer consists of one neuron

using the ReLU activation function. All models use the LHD of an event as input.

In the following, five metrics are studied to evaluate the model’s performance on

the test dataset. Figure 3.9 shows the mean squared error (MSE) calculated for

each energy separately. The higher energies have a larger MSE than the lower en-

ergies. This is expected since the distances between the training energy classes

are smaller at low energies. The model using the CNN with energy balance weights

seems to perform better than the other models, which perform similarly. Figure 3.10

shows the difference between the predicted and true energy values. Also in this met-

ric, the model using the CNN with energy balance weights has a smaller difference

between predicted and true energies as compared to the other models. Another

prominent feature illustrated in Figure 3.10 is the anti-symmetry of positive and

negative differences. The model using the CNN with energy balance weights shows

more frequent and larger positive than negative difference values, e.g. −2.5 GeV

has ∼ 10 counts compared to 2.5 GeV with ∼ 50 counts. However, the other three

models show a different trend with slightly more frequent and larger negative than

positive values, e.g. −5 GeV has ∼ 20 counts compared to 5 GeV with ∼ 10 counts.

To further investigate the antisymmetric behavior, Figure E.2 illustrates the distri-
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Figure 3.9: Comparison of the test loss (mean squared error) for all energies consid-
ered in this work and all models, either using the energy balance weights (e.b.w.)
or not.

bution of the predicted energies for each energy class separately for the model using

the FNN without energy balance weights. The comparable figures for the other

models can be found in Appendix E. The distributions of the predicted energies

of the higher energies Eprim = 20, 30, 40, 60, 80 GeV in Figure E.2 mostly follow a

Gaussian trend. However, the distributions of the predicted energies of the lower

energies Eprim = 1, 2, 3, 4, 5 GeV display unique shapes that differ from the expected

Gaussian distribution. In all models, no predicted energy values below 1 GeV are

observed, making 1 GeV the minimum of the range of the output values of all mod-

els. A possible explanation for this is the fact that no energies below this minimum

are used during training. In contrast to this, no maximum energy is observed at

Eprim = 80 GeV, which is the highest energy class included in the training dataset.

Further research is needed to understand the cause of this seemingly contradicting

behavior. The distributions of the predicted energies of Eprim = 2, 3, 4, 5 GeV could

be explained by the different step sizes between the energy classes. For example,

as 5 GeV is closer to 4 GeV than 20 GeV predictions tend to be more under than

above Eprim = 5 GeV because this region is more explored than the region between

5 and 20 GeV. The distributions of the predicted energies of higher Eprim of other

models can be found in Appendix E, which show antisymmetric differences from the

expected Gaussian distribution could also be explained by the different step sizes.

In further studies, models using the same energy class step size could be used to
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Figure 3.10: Comparison of the difference between the predicted and true (pred −
true) energy for all models, either using the energy balance weights (e.b.w.) or not,
including all energies considered in this thesis.

investigate the hypothesis of the importance of equal step sizes or a dataset con-

taining continuous energy values could be used in training to study the impact of

the discrete energies on the regression task.

Even though the distributions of the predicted energies are not all Gaussian, the

mean and standard deviation of the distributions of the predicted energies are used

to calculate the energy resolution and linearity introduced in Section 2.4. The lin-

earity and energy resolution of the classical approach using the total number of hits

to estimate the energy of the primary particle is shown in Figure 1.7. The energy

resolution and linearity of the models can not be considered fully comparable to

the energy resolution and linearity of the classical approach, because not all distri-

butions of the predicted energies are Gaussian distributed. Figure 3.12 shows the

linearity of the mean predicted energy of the models and the true energy (left). The

mean energy prediction is fitted with the linear function y = m ·x to the true energy

for every model separately. A perfect model would deliver a gradient of m = 1. All

models besides the model using the CNN with energy balance weights have a gra-

dient lower than 1. This is consistent with the antisymmetric distributions shown

in Figure 3.10. The relative difference between the mean of the predicted energies

and the linear fit illustrated in Figure 3.12 (right) has larger differences for lower

energies. This is caused by the antisymmetric and non-Gaussian distributions of
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Figure 3.11: Distributions of the predicted energies of the energies Eprim =1, 2, 3,
4, 5, 20, 30, 40, 60, and 80 GeV for the model using FNN without weights. The
x-axis shows the predicted energy and the y-axis is the counted amount.

the predicted energies of the lower Eprim, which make it impossible that the mean

is equal to the true energy. In comparison to the ratio of the linearity of the total

number of hits in Figure 1.7, the mean predicted ratios of the models perform worse.

Figure 3.13 shows the models energy resolution. The energy resolution describes

the spread and accuracy of the energy prediction of the models. The energy resolu-

tion of every model shows better or similar performance than the energy resolution

using the classical approach, but this should be considered with care as not all model

energy prediction distributions follow a Gaussian distribution, as opposed to the dis-

tributions used to calculate the energy resolution of the classical approach. However,

as the higher energy values mostly show a Gaussian distribution, the model resolu-
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Figure 3.12: Model linearity of the mean energy predictions and the true energy
with linear fits y = m ·x and their gradient (left), the ratio of the relative difference
of the mean energy prediction and the value of the linear fit (right).

Figure 3.13: Energy resolution of all models.

tion is comparable for these energies. For the higher energies, the models show equal

values of the energy resolution to the energy resolution of the classical approach.

Only the model using the CNN with energy balance weights has lower values of

the energy resolution than the classical approach. However, the validity of this re-

sult requires further studies because the distributions of the predicted energies of

the higher Eprim for this model are generally not Gaussian distributions. A better

model energy resolution implies that the models can reduce the error that is found

for the estimation of the energy of the primary particle that only uses the total num-

ber of hits. Also instead of the 1√
E

dependence found in the detector hits energy

resolution, the model resolution is expected to follow a 1
E
distribution, as the mean

energy prediction should be µ ∼ E resulting in σ
µ
∼ 1

E
.
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In conclusion, it is found that the energy prediction of electron events with neu-

ral networks is possible, and its energy resolution is equal to or better than the

energy resolution of the classical approach based on the total number of hits. How-

ever, the usage of energy classes with unequal step sizes for the regression task may

induce the non-Gaussian distributions of the energy prediction seen in this work.

Because of this, the energy resolution of the models and the classical approach are

not comparable for all energies and all models. In further studies, this issue can be

studied, by using equal steps for energy classes, e.g. only Eprim = 20, 40, 60, and

80 GeV, or with a new dataset using continuous energy values.
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Summary and outlook

In this thesis, particle identification and the prediction of the energy of electron

events with neural networks based on the simulated EPICAL-2 detector response

are explored. The detector response of the EPICAL-2 to a particle shower can be

represented as a three-dimensional spatial hit distribution. However, this spatial hit

distribution is a large data format as it encompasses the information of ∼ 25× 106

pixels. To efficiently explore the use of neural networks, the longitudinal hit distri-

bution is extracted from the spatial hit distribution to use as input to the neural

networks. The longitudinal hit distribution is observed to divide three classes for the

particle identification and separate the different energies of the electron events well.

This makes the longitudinal hit distribution a good parameter for the explored tasks.

The particle identification is done on the basis of the longitudinal hit distribu-

tion dividing the three classes: electrons, showering hadrons, and not showering

hadrons/muons. Different feedforward and convolutional neural networks are stud-

ied and compared for this task. The best model has a 97.96% accuracy, which

describes the relative number of correctly classified events.

The electron energy regression is also based on the longitudinal hit distribution

and uses different feedforward and convolutional neural networks to predict the en-

ergy of an electron event. The distributions of the predicted electron energy of the

models show unexpected non-Gaussian distributions for some energies. This could

be caused by the training dataset, which contains events from discrete energy values

with varying step sizes. Also using discrete energy values for a regression task that

predicts continuous values could play a role. The distributions of the predicted elec-

tron energy that show a Gaussian distribution perform equally well as the classical

energy estimator using the total number of hits to predict the energy of electron

events. Further research is needed to understand the cause of the distributions of
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the predicted energies.

In this thesis, all models use the longitudinal hit distribution as input. However,

there are other parameters that can hold additional information about the particle

shower that could be included in the input of the models to increase their per-

formance. An additional parameter could be the lateral hit distribution or lateral

shower profile of every layer, studied in [Alm+23].

In this analysis, only feedforward and convolutional neural networks are used. How-

ever, there are more types of neural networks that can be explored. In further

research, emphasis should be placed on neural networks based on graphs. The spa-

tial hit distribution measured by the EPICAL-2 can be represented as a graph, which

greatly reduces the size of the data format. The graph representation of the spatial

hit distribution has an expected size between 3×102 to 3×104 hit features depending

on the event, in contrast to the 25× 106 pixel features of the spatial hit distribution

for every event. Neural networks working on graphs for the explored tasks are graph

neural networks and graph transformers. In detail, the dynamic graph convolutional

neural networks (DGCNN) [Wan+19], the GarNet, and the GravNet [Qas+19] are

candidates for the graph data of EPICAL-2.

Exploring graph neural networks and graph transformers opens up other possible

tasks. In this work, it is assumed that all events contain only one primary particle,

but this is not always the case. Graph-based neural networks should be able to

handle tasks with multiple primary particles, such as energy prediction of each of

the multiple primary particles. Another potential task is the simulation of parti-

cle showers with neural networks. Possible candidates for generative models that

are able to simulate the spatial hit distributions of particle showers are generative

adversarial networks (GAN) [Goo+14] in combination with graph transformers or

the graph neural network, introduced above. More possible candidates of generative

models can be found in [HEP], which are explored for other tasks and detectors but

could potentially be applied to the EPICAL-2 as well.
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agreeing to examine this thesis. I want to express my gratitude to Mario Krüger and
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Appendix A

Dataset parameters

kind of particle energy in GeV N
electron 1 100,000

2 100,000
3 100,000
4 100,000
5 100,000
20 40,000
30 40,000
40 40,000
60 10,000
80 10,000

muon 20 49,990
30 49,992
40 49,986
60 49,985
80 49,979

pion 20 49,999
30 49,997
40 49,993
60 49,989
80 49,988

52



APPENDIX A. DATASET PARAMETERS

kind of particle energy in GeV N
kaon 20 49,994

30 49,995
40 49,986
60 49,990
80 49,984

proton 20 49,996
30 49,995
40 49,992
60 49,991
80 49,987

Table A.1: Detailed description of the dataset used in this work. N represents the
number of events for this class.
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Appendix B

Longitudinal hit distribution of

hadrons

B.1 Pions, kaons, and protons with 200 hits cut

Figure B.1: Mean LHD of kaons using the 200 total hits cut.
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Figure B.2: Mean LHD of pions using the 200 total hits cut.

Figure B.3: Mean LHD of protons using the 200 total hits cut.

55



APPENDIX B. LONGITUDINAL HIT DISTRIBUTION OF HADRONS

B.2 Hadrons with 150 hits cut

Figure B.4: Mean LHD of showering hadrons (left) and not showering hadrons
(right) with a 150 total hits cut average over all hadron types.

B.3 Pions, kaons, and protons with 150 hits cut

Figure B.5: Mean LHD of kaons using the 150 total hits cut.
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Figure B.6: Mean LHD of pions using the 150 total hits cut.

Figure B.7: Mean LHD of protons using the 150 total hits cut.
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Appendix C

Binary particle classification

C.1 Model architectures

Figure C.1: Architecture of the CNN1 model of the binary particle classification.
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Figure C.2: Architecture of the FNN1 model of the binary particle classification.

Figure C.3: Architecture of the FNN2 model of the binary particle classification.
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C.2 Models loss of the training process

Figure C.4: Loss of the training process of the CNN1 model.

Figure C.5: Loss of the training process of the FNN1 model.
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Figure C.6: Loss of the training process of the FNN2 model.

C.3 LHD of wrongly classified data of the FNN

models

Figure C.7: LHD of wrongly classified events of the FNN1.
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Figure C.8: LHD of wrongly classified events of the FNN2.
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Appendix D

Particle identification

D.1 Model architectures

Figure D.1: Architecture of the CNN models of the particle identification.
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Figure D.2: Architecture of the FNN models of the particle identification.
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D.2 Confusion matrices

Figure D.3: Confusion matrix for the CNN models with (left) and without (right)
class balance weights, and for the 150 (top) and 200 (bottom) hits hadron cut. For
each class, the precision P and recall R are calculated.
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Figure D.4: Confusion matrix for the FNN models with (left) and without (right)
class balance weights, and for the 150 (top) and 200 (bottom) hits hadron cut. For
each class, the precision P and recall R are calculated.
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Appendix E

Electron energy regression

Figure E.1: Distributions of the predicted energies of the energies Eprim =1, 2, 3, 4,
5, 20, 30, 40, 60, and 80 GeV for the model using FNN with energy balance weights.
The x-axis shows the predicted energy and the y-axis is the counted amount.
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Figure E.2: Distributions of the predicted energies of the energies Eprim =1, 2, 3, 4,
5, 20, 30, 40, 60, and 80 GeV for the model using CNN without weights. The x-axis
shows the predicted energy and the y-axis is the counted amount.
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Figure E.3: Distributions of the predicted energies of the energies Eprim =1, 2, 3, 4,
5, 20, 30, 40, 60, and 80 GeV for the model using CNN with weights. The x-axis
shows the predicted energy and the y-axis is the counted amount.
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